Monday, May 9, 2011

MATERI OSN KEBUMIAN


GEOSFER

Struktur Bumi

Struktur Bumi
Struktur Bumi seperti yang terlihat pada gambar diatas.
Secara keseluruhan, bumi terbagi menjadi empat aspek yaitu; atmosphere (udara), hydrosphere (air), lithosphere (batuan solid) dan biosphere (kehidupan organik).
Disini saya hanya akan menjabarkan sedikit tentang lithosphere saja, karena berhubungan dengan batuan.
Lithosphere adalah akumulasi masa dari batuan-batuan padat yang membentuk selubung yang mengelilingi bagian cair bumi yang panas (magma). Lithosphere terdiri dari komponen primer seperti;
1. Minerals, segala bentuk komponen kimia yang memiliki sifat-sifat fisika dan kimia. Seperti silika (SIO2) atau kalsium karbonat (CaCO3).
2. Batuan, secara alami terbentuk, materi mineral terkonsolidasi dan terkompaksi.Batuan bisa terdiri dari hanya satu macam mineral saja (Contohnya; Salt) atau terdiri dari berbagai mineral (Contohnya; sandstone).
3. Fluida, komponen paling banyak adalah air (lebih dari 90%), gas dan hydrocarbon.
Ketebalan lithosphere bervariasi, dari sekitar 65 km sampai 100 km, dan terdiri dari batuan silika-magnesium (SIMA) dan silik-aluminium (SIAL). Lithosphere mempunyai nilai Specific Gravity (SG) 2.7 sampai 3.
Crust adalah bagian paling atas dari lithosphere dan membentuk lempeng benua dan lempeng samudera. Fluida seperti air, minyak dan gas berada pada lempeng-lempeng ini. Ketebalan crust bervariasi mulai dari 5 km sampai 60 km. Terdiri dari batuan dan mineral berbagai tipe. Klasifikasi dasar dari batuan berdasarkan asal usul terbentuknya terdiri dari tiga macam batuan, yaitu;
1. Igneous Rock (Batuan Beku), terkristalisasi dari bekuan magma.
2. Sedimentary (Batuan Sediment), endapan dari hasil pengikisan batuan permukaan.
3. Metamorphic (Batuan Ubahan), hasil dari alterasi batuan dan mineral lain.
Crust, selagi dalam bentuk solidnya bersifat mobile dan mengapung diatas cairan magma. Menurut teori tektonik lempeng, terjadi arus konveksi dibawah lapisan crust ini memaksa magma (batuan panas/cair, yang bergerak plastis) untuk bergerak keatas. Pada titik-titik tertentu (biasanya pada mid-ocean) magma membentuk celah/palung dan menerobos ke permukaan. Hal ini akan menyebabkan lempeng saling bergerak menjauh atau saling bertabrakan secara gradual. Jika pergerakan ini terjadi dengan tiba-tiba, terjadilah gempa.
Continental Crust
Dari gambar disamping, dapat dilihat bahwa pergerakan konveksi dari magma menyebabkan terjadinya mid-ocean ridge pada lempeng samudra dan rift valley pada lempeng benua. Kedua lempeng ini bergerak saling mendekat dan bertubrukan (subduction zone). Karena massa dari lempeng samudra lebih kecil dari massa lempeng benua, pada subduction zone ini lempeng samudra akan menyusup kebawah dan meleleh (melting). Siklus ini akan terus berulang.
PlateDisamping adalah gambar dari lempeng-lempeng yang mengapung bergerak saling menjauh dan mendekat saat ini dibumi kita tercinta ini.
Mantel, Dibawah lithosphere penelitian semakin sulit dilakukan. Lapisan ini dikenal juga sebagai lapisan Pyrosphere, ketebalannya diperkirakan 2900 km. Terdiri dari besi dan mineral SIMA. Density sekitar 3.5 SG, dan suhu rata-rata sekitar 2000 deg Celcius. Tekanan dari lapisan diatasnya membuat lapisan ini selalu dalam kondisi solid, tapi tetap bisa melelehkan batuan. Lapisan mantle paling luar sekitar 200 km dinamai dengan asthenosphere. Pada lapisan ini tekanan dan suhu berada pada kondisi berimbang sehingga lapisan ini bersifat plastis. Asthenosphere merupakan sumber dari aktivitas volkanik dan seismik (gempa).
Core, inti bumi berukuran diameter 7000 km dan terdiri dari besi dan nikel. Lapisan paling luar (tebal 2200 km) merupakan liquid atau cairan. Lapisan terdalam bersifat solid atau padat, dengan density sekitar 10.5 SG dan suhunya lebih dari 5000 deg celcius. Menurut teori, perputaran bumi pada porosnya (rotasi) menyebabkan terjadinya arus sirkulasi pada bagian cair inti bumi. Sirkulasi ini merupakan sumber dari medan magnet yang menyelimuti bumi.
General Data
  • Average Density sekitar 5.5 SG
  • Suhu bumi meningkat seiring dengan kedalaman bumi, rata-rata 1 deg celcius per 30 m pada batuan sedimen. Ini disebut sebagai Geothermal Gradient. Pada daerah vulkanik gradiennya sekitar 1 deg celcius per 10 m. Pada daerah granite tua (basement rock) gradiennya sekitar 1 deg celcius per 80 m.
  • Perkiraan usia bumi sekitar 4.600.000.000 tahun (menggunakan metoda dating radioaktif).






















Tektonika lempeng


Ini adalah artikel bagus. Klik untuk informasi lebih lanjut.
http://upload.wikimedia.org/wikipedia/commons/thumb/f/fe/Plates_tect2_id.svg/350px-Plates_tect2_id.svg.png
Lempeng-lempeng tektonik di bumi barulah dipetakan pada paruh kedua abad ke-20.
Teori tektonika Lempeng (bahasa Inggris: Plate Tectonics) adalah teori dalam bidang geologi yang dikembangkan untuk memberi penjelasan terhadap adanya bukti-bukti pergerakan skala besar yang dilakukan oleh litosfer bumi. Teori ini telah mencakup dan juga menggantikan Teori Pergeseran Benua yang lebih dahulu dikemukakan pada paruh pertama abad ke-20 dan konsep seafloor spreading yang dikembangkan pada tahun 1960-an.
Bagian terluar dari interior bumi terbentuk dari dua lapisan. Di bagian atas terdapat litosfer yang terdiri atas kerak dan bagian teratas mantel bumi yang kaku dan padat. Di bawah lapisan litosfer terdapat astenosfer yang berbentuk padat tetapi bisa mengalir seperti cairan dengan sangat lambat dan dalam skala waktu geologis yang sangat lama karena viskositas dan kekuatan geser (shear strength) yang rendah. Lebih dalam lagi, bagian mantel di bawah astenosfer sifatnya menjadi lebih kaku lagi. Penyebabnya bukanlah suhu yang lebih dingin, melainkan tekanan yang tinggi.
Lapisan litosfer dibagi menjadi lempeng-lempeng tektonik (tectonic plates). Di bumi, terdapat tujuh lempeng utama dan banyak lempeng-lempeng yang lebih kecil. Lempeng-lempeng litosfer ini menumpang di atas astenosfer. Mereka bergerak relatif satu dengan yang lainnya di batas-batas lempeng, baik divergen (menjauh), konvergen (bertumbukan), ataupun transform (menyamping). Gempa bumi, aktivitas vulkanik, pembentukan gunung, dan pembentukan palung samudera semuanya umumnya terjadi di daerah sepanjang batas lempeng. Pergerakan lateral lempeng lazimnya berkecepatan 50-100 mm/a.[1]

Perkembangan Teori

http://upload.wikimedia.org/wikipedia/commons/thumb/b/bf/Tectonic_plates_boundaries_detailed-en.svg/375px-Tectonic_plates_boundaries_detailed-en.svg.png
Peta dengan detail yang menunjukkan lempeng-lempeng tektonik dan arah vektor gerakannya
Pada akhir abad ke-19 dan awal abad ke-20, geolog berasumsi bahwa kenampakan-kenampakan utama bumi berkedudukan tetap. Kebanyakan kenampakan geologis seperti pegunungan bisa dijelaskan dengan pergerakan vertikal kerak seperti dijelaskan dalam teori geosinklin. Sejak tahun 1596, telah diamati bahwa pantai Samudera Atlantik yang berhadap-hadapan antara benua Afrika dan Eropa dengan Amerika Utara dan Amerika Selatan memiliki kemiripan bentuk dan nampaknya pernah menjadi satu. Ketepatan ini akan semakin jelas jika kita melihat tepi-tepi dari paparan benua di sana.[2] Sejak saat itu banyak teori telah dikemukakan untuk menjelaskan hal ini, tetapi semuanya menemui jalan buntu karena asumsi bahwa bumi adalah sepenuhnya padat menyulitkan penemuan penjelasan yang sesuai.[3]
Penemuan radium dan sifat-sifat pemanasnya pada tahun 1896 mendorong pengkajian ulang umur bumi,[4] karena sebelumnya perkiraan didapatkan dari laju pendinginannya dan dengan asumsi permukaan bumi beradiasi seperti benda hitam.[5] Dari perhitungan tersebut dapat disimpulkan bahwa bahkan jika pada awalnya bumi adalah sebuah benda yang merah-pijar, suhu Bumi akan menurun menjadi seperti sekarang dalam beberapa puluh juta tahun. Dengan adanya sumber panas yang baru ditemukan ini maka para ilmuwan menganggap masuk akal bahwa Bumi sebenarnya jauh lebih tua dan intinya masih cukup panas untuk berada dalam keadaan cair.
Teori Tektonik Lempeng berasal dari Hipotesis Pergeseran Benua (continental drift) yang dikemukakan Alfred Wegener tahun 1912.[6] dan dikembangkan lagi dalam bukunya The Origin of Continents and Oceans terbitan tahun 1915. Ia mengemukakan bahwa benua-benua yang sekarang ada dulu adalah satu bentang muka yang bergerak menjauh sehingga melepaskan benua-benua tersebut dari inti bumi seperti 'bongkahan es' dari granit yang bermassa jenis rendah yang mengambang di atas lautan basal yang lebih padat.[7][8] Namun, tanpa adanya bukti terperinci dan perhitungan gaya-gaya yang dilibatkan, teori ini dipinggirkan. Mungkin saja bumi memiliki kerak yang padat dan inti yang cair, tetapi tampaknya tetap saja tidak mungkin bahwa bagian-bagian kerak tersebut dapat bergerak-gerak. Di kemudian hari, dibuktikanlah teori yang dikemukakan geolog Inggris Arthur Holmes tahun 1920 bahwa tautan bagian-bagian kerak ini kemungkinan ada di bawah laut. Terbukti juga teorinya bahwa arus konveksi di dalam mantel bumi adalah kekuatan penggeraknya.[3][9][10]
Bukti pertama bahwa lempeng-lempeng itu memang mengalami pergerakan didapatkan dari penemuan perbedaan arah medan magnet dalam batuan-batuan yang berbeda usianya. Penemuan ini dinyatakan pertama kali pada sebuah simposium di Tasmania tahun 1956. Mula-mula, penemuan ini dimasukkan ke dalam teori ekspansi bumi,[11] namun selanjutnya justeru lebih mengarah ke pengembangan teori tektonik lempeng yang menjelaskan pemekaran (spreading) sebagai konsekuensi pergerakan vertikal (upwelling) batuan, tetapi menghindarkan keharusan adanya bumi yang ukurannya terus membesar atau berekspansi (expanding earth) dengan memasukkan zona subduksi/hunjaman (subduction zone), dan sesar translasi (translation fault). Pada waktu itulah teori tektonik lempeng berubah dari sebuah teori yang radikal menjadi teori yang umum dipakai dan kemudian diterima secara luas di kalangan ilmuwan. Penelitian lebih lanjut tentang hubungan antara seafloor spreading dan balikan medan magnet bumi (geomagnetic reversal) oleh geolog Harry Hammond Hess dan oseanograf Ron G. Mason[12][13][14][15] menunjukkan dengan tepat mekanisme yang menjelaskan pergerakan vertikal batuan yang baru.
Seiring dengan diterimanya anomali magnetik bumi yang ditunjukkan dengan lajur-lajur sejajar yang simetris dengan magnetisasi yang sama di dasar laut pada kedua sisi mid-oceanic ridge, tektonik lempeng menjadi diterima secara luas. Kemajuan pesat dalam teknik pencitraan seismik mula-mula di dalam dan sekitar zona Wadati-Benioff dan beragam observasi geologis lainnya tak lama kemudian mengukuhkan tektonik lempeng sebagai teori yang memiliki kemampuan yang luar biasa dalam segi penjelasan dan prediksi.
Penelitian tentang dasar laut dalam, sebuah cabang geologi kelautan yang berkembang pesat pada tahun 1960-an memegang peranan penting dalam pengembangan teori ini. Sejalan dengan itu, teori tektonik lempeng juga dikembangkan pada akhir 1960-an dan telah diterima secara cukup universal di semua disiplin ilmu, sekaligus juga membaharui dunia ilmu bumi dengan memberi penjelasan bagi berbagai macam fenomena geologis dan juga implikasinya di dalam bidang lain seperti paleogeografi dan paleobiologi.

Prinsip-prinsip Utama

Bagian luar interior bumi dibagi menjadi litosfer dan astenosfer berdasarkan perbedaan mekanis dan cara terjadinya perpindahan panas. Litosfer lebih dingin dan kaku, sedangkan astenosfer lebih panas dan secara mekanik lemah. Selain itu, litosfer kehilangan panasnya melalui proses konduksi, sedangkan astenosfer juga memindahkan panas melalui konveksi dan memiliki gradien suhu yang hampir adiabatik. Pembagian ini sangat berbeda dengan pembagian bumi secara kimia menjadi inti, mantel, dan kerak. Litosfer sendiri mencakup kerak dan juga sebagian dari mantel. Suatu bagian mantel bisa saja menjadi bagian dari litosfer atau astenosfer pada waktu yang berbeda, tergantung dari suhu, tekanan, dan kekuatan gesernya. Prinsip kunci tektonik lempeng adalah bahwa litosfer terpisah menjadi lempeng-lempeng tektonik yang berbeda-beda. Lempeng ini bergerak menumpang di atas astenosfer yang mempunyai viskoelastisitas sehingga bersifat seperti fluida. Pergerakan lempeng biasanya bisa mencapai 10-40 mm/a (secepat pertumbuhan kuku jari) seperti di Mid-Atlantic Ridge, ataupun mencapai 160 mm/a (secepat pertumbuhan rambut) seperti di Lempeng Nazca.[16][17] Lempeng-lempeng ini tebalnya sekitar 100 km dan terdiri atas mantel litosferik yang di atasnya dilapisi dengan hamparan salah satu dari dua jenis material kerak. Yang pertama adalah kerak samudera atau yang sering disebut dengan "sima", gabungan dari silikon dan magnesium. Jenis yang kedua yaitu kerak benua yang sering disebut "sial", gabungan dari silikon dan aluminium. Kedua jenis kerak ini berbeda dari segi ketebalan di mana kerak benua memiliki ketebalan yang jauh lebih tinggi dibandingkan dengan kerak samudera. Ketebalan kerak benua mencapai 30-50 km sedangkan kerak samudera hanya 5-10 km.
Dua lempeng akan bertemu di sepanjang batas lempeng (plate boundary), yaitu daerah di mana aktivitas geologis umumnya terjadi seperti gempa bumi dan pembentukan kenampakan topografis seperti gunung, gunung berapi, dan palung samudera. Kebanyakan gunung berapi yang aktif di dunia berada di atas batas lempeng, seperti Cincin Api Pasifik (Pacific Ring of Fire) di Lempeng Pasifik yang paling aktif dan dikenal luas.
Lempeng tektonik bisa merupakan kerak benua atau samudera, tetapi biasanya satu lempeng terdiri atas keduanya. Misalnya, Lempeng Afrika mencakup benua itu sendiri dan sebagian dasar Samudera Atlantik dan Hindia. Perbedaan antara kerak benua dan samudera ialah berdasarkan kepadatan material pembentuknya. Kerak samudera lebih padat daripada kerak benua dikarenakan perbedaan perbandingan jumlah berbagai elemen, khususnya silikon. Kerak samudera lebih padat karena komposisinya yang mengandung lebih sedikit silikon dan lebih banyak materi yang berat. Dalam hal ini, kerak samudera dikatakan lebih bersifat mafik ketimbang felsik.[18] Maka, kerak samudera umumnya berada di bawah permukaan laut seperti sebagian besar Lempeng Pasifik, sedangkan kerak benua timbul ke atas permukaan laut, mengikuti sebuah prinsip yang dikenal dengan isostasi.

Jenis-jenis Batas Lempeng

http://upload.wikimedia.org/wikipedia/commons/thumb/4/40/Tectonic_plate_boundaries.png/350px-Tectonic_plate_boundaries.png
Tiga jenis batas lempeng (plate boundary).
Ada tiga jenis batas lempeng yang berbeda dari cara lempengan tersebut bergerak relatif terhadap satu sama lain. Tiga jenis ini masing-masing berhubungan dengan fenomena yang berbeda di permukaan. Tiga jenis batas lempeng tersebut adalah:
  1. Batas transform (transform boundaries) terjadi jika lempeng bergerak dan mengalami gesekan satu sama lain secara menyamping di sepanjang sesar transform (transform fault). Gerakan relatif kedua lempeng bisa sinistral (ke kiri di sisi yang berlawanan dengan pengamat) ataupun dekstral (ke kanan di sisi yang berlawanan dengan pengamat). Contoh sesar jenis ini adalah Sesar San Andreas di California.
  2. Batas divergen/konstruktif (divergent/constructive boundaries) terjadi ketika dua lempeng bergerak menjauh satu sama lain. Mid-oceanic ridge dan zona retakan (rifting) yang aktif adalah contoh batas divergen
  3. Batas konvergen/destruktif (convergent/destructive boundaries) terjadi jika dua lempeng bergesekan mendekati satu sama lain sehingga membentuk zona subduksi jika salah satu lempeng bergerak di bawah yang lain, atau tabrakan benua (continental collision) jika kedua lempeng mengandung kerak benua. Palung laut yang dalam biasanya berada di zona subduksi, di mana potongan lempeng yang terhunjam mengandung banyak bersifat hidrat (mengandung air), sehingga kandungan air ini dilepaskan saat pemanasan terjadi bercampur dengan mantel dan menyebabkan pencairan sehingga menyebabkan aktivitas vulkanik. Contoh kasus ini dapat kita lihat di Pegunungan Andes di Amerika Selatan dan busur pulau Jepang (Japanese island arc).

Kekuatan Penggerak Pergerakan Lempeng

Pergerakan lempeng tektonik bisa terjadi karena kepadatan relatif litosfer samudera dan karakter astenosfer yang relatif lemah. Pelepasan panas dari mantel telah didapati sebagai sumber asli dari energi yang menggerakkan tektonik lempeng. Pandangan yang disetujui sekarang, meskipun masih cukup diperdebatkan, adalah bahwa kelebihan kepadatan litosfer samudera yang membuatnya menyusup ke bawah di zona subduksi adalah sumber terkuat pergerakan lempeng. Pada waktu pembentukannya di mid ocean ridge, litosfer samudera pada mulanya memiliki kepadatan yang lebih rendah dari astenosfer di sekitarnya, tetapi kepadatan ini meningkat seiring dengan penuaan karena terjadinya pendinginan dan penebalan. Besarnya kepadatan litosfer yang lama relatif terhadap astenosfer di bawahnya memungkinkan terjadinya penyusupan ke mantel yang dalam di zona subduksi sehingga menjadi sumber sebagian besar kekuatan penggerak pergerakan lempeng. Kelemahan astenosfer memungkinkan lempeng untuk bergerak secara mudah menuju ke arah zona subduksi [19] Meskipun subduksi dipercaya sebagai kekuatan terkuat penggerak pergerakan lempeng, masih ada gaya penggerak lain yang dibuktikan dengan adanya lempeng seperti lempeng Amerika Utara, juga lempeng Eurasia yang bergerak tetapi tidak mengalami subduksi di manapun. Sumber penggerak ini masih menjadi topik penelitian intensif dan diskusi di kalangan ilmuwan ilmu bumi. Pencitraan dua dan tiga dimensi interior bumi (tomografi seismik) menunjukkan adanya distribusi kepadatan yang heterogen secara lateral di seluruh mantel. Variasi dalam kepadatan ini bisa bersifat material (dari kimia batuan), mineral (dari variasi struktur mineral), atau termal (melalui ekspansi dan kontraksi termal dari energi panas). Manifestasi dari keheterogenan kepadatan secara lateral adalah konveksi mantel dari gaya apung (buoyancy forces) [20] Bagaimana konveksi mantel berhubungan secara langsung dan tidak dengan pergerakan planet masih menjadi bidang yang sedang dipelajari dan dibincangkan dalam geodinamika. Dengan satu atau lain cara, energi ini harus dipindahkan ke litosfer supaya lempeng tektonik bisa bergerak. Ada dua jenis gaya yang utama dalam pengaruhnya ke pergerakan planet, yaitu friksi dan gravitasi.

Gaya Gesek

Basal drag
Arus konveksi berskala besar di mantel atas disalurkan melalui astenosfer, sehingga pergerakan didorong oleh gesekan antara astenosfer dan litosfer.
Slab suction
Arus konveksi lokal memberikan tarikan ke bawah pada lempeng di zona subduksi di palung samudera. Penyerotan lempengan (slab suction) ini bisa terjadi dalam kondisi geodinamik di mana tarikan basal terus bekerja pada lempeng ini pada saat ia masuk ke dalam mantel, meskipun sebetulnya tarikan lebih banyak bekerja pada kedua sisi lempengan, atas dan bawah

Gravitasi

Runtuhan gravitasi: Pergerakan lempeng terjadi karena lebih tingginya lempeng di oceanic ridge. Litosfer samudera yang dingin menjadi lebih padat daripada mantel panas yang merupakan sumbernya, maka dengan ketebalan yang semakin meningkat lempeng ini tenggelam ke dalam mantel untuk mengkompensasikan beratnya, menghasilkan sedikit inklinasi lateral proporsional dengan jarak dari sumbu ini. :Dalam teks-teks geologi pada pendidikan dasar, proses ini sering disebut sebagai sebuah doronga. Namun, sebenarnya sebutan yang lebih tepat adalah runtuhan karena topografi sebuah lempeng bisa jadi sangat berbeda-beda dan topografi pematang (ridge) yang melakukan pemekaran hanyalah fitur yang paling dominan. Sebagai contoh, pembengkakan litosfer sebelum ia turun ke bawah lempeng yang bersebelahan menghasilkan kenampakan yang bisa memengaruhi topografi. Lalu, mantel plume yang menekan sisi bawah lempeng tektonik bisa juga mengubah topografi dasar samudera.
Slab-pull (tarikan lempengan)
Pergerakan lempeng sebagian disebabkan juga oleh berat lempeng yang dingin dan padat yang turun ke mantel di palung samudera.[21] Ada bukti yang cukup banyak bahwa konveksi juga terjadi di mantel dengan skala cukup besar. Pergerakan ke atas materi di mid-oceanic ridge mungkin sekali adalah bagian dari konveksi ini. Beberapa model awal Tektonik Lempeng menggambarkan bahwa lempeng-lempeng ini menumpang di atas sel-sel seperti ban berjalan. Namun, kebanyakan ilmuwan sekarang percaya bahwa astenosfer tidaklah cukup kuat untuk secara langsung menyebabkan pergerakan oleh gesekan gaya-gaya itu. Slab pull sendiri sangat mungkin menjadi gaya terbesar yang bekerja pada lempeng. Model yang lebih baru juga memberi peranan yang penting pada penyerotan (suction) di palung, tetapi lempeng seperti Lempeng Amerika Utara tidak mengalami subduksi di manapun juga, tetapi juga mengalami pergerakan seperti juga Lempeng Afrika, Eurasia, dan Antarktika. Kekuatan penggerak utama untuk pergerakan lempeng dan sumber energinya itu sendiri masih menjadi bahan riset yang sedang berlangsung

Gaya dari luar

Dalam studi yang dipublikasikan pada edisi Januari-Februari 2006 dari buletin Geological Society of America Bulletin, sebuah tim ilmuwan dari Italia dan Amerika Serikat berpendapat bahwa komponen lempeng yang mengarah ke barat berasal dari rotasi Bumi dan gesekan pasang bulan yang mengikutinya. Mereka berkata karena Bumi berputar ke timur di bawah bulan, gravitasi bulan meskipun sangat kecil menarik lapisan permuikaan bumi kembali ke barat. Beberapa juga mengemukakan ide kontroversial bahwa hasil ini mungkin juga menjelaskan mengapa Venus dan Mars tidak memiliki lempeng tektonik, yaitu karena ketiadaan bulan di Venus dan kecilnya ukuran bulan Mars untuk memberi efek seperti pasang di bumi.[22] Pemikiran ini sendiri sebetulnya tidaklah baru. Hal ini sendiri aslinya dikemukakan oleh bapak dari hipotesis ini sendiri, Alfred Wegener, dan kemudian ditentang fisikawan Harold Jeffreys yang menghitung bahwa besarnya gaya gesek oasang yang diperlukan akan dengan cepat membawa rotasi bumi untuk berhenti sejak waktu lama. Banyak lempeng juga bergerak ke utara dan barat, bahkan banyaknya pergerakan ke barat dasar Samudera Pasifik adalah jika dilihat dari sudut pandang pusat pemekaran (spreading) di Samudera Pasifik yang mengarah ke timur. Dikatakan juga bahwa relatif dengan mantel bawah, ada sedikit komponen yang mengarah ke barat pada pergerakan semua lempeng

Signifikansi relatif masing-masing mekanisme

http://upload.wikimedia.org/wikipedia/commons/thumb/7/7c/Global_plate_motion_2008-04-17.jpg/350px-Global_plate_motion_2008-04-17.jpg
Pergerakan lempeng berdasar pada data satelit GPS NASA JPL. Vektor di sini menunjukkan arah dan magnitudo gerakan.
Vektor yang sebenarnya pada pergerakan sebuah planet harusnya menjadi fungsi semua gaya yang bekerja pada lempeng itu. Namun, masalahnya adalah seberapa besar setiap proses ambil bagian dalam pergerakan setiap lempeng Keragaman kondisi geodinamik dan sifat setiap lempeng seharusnya menghasilkan perbedaan dalam seberapa proses-proses tersebut secara aktif menggerakkan lempeng. satu cara untuk mengatasi masalah ini adalah dengan melihat laju di mana setiap lempeng bergerak dan mempertimbangkan bukti yang ada untuk setiap kekuatan penggerak dari lempeng ini sejauh mungkin. Salah satu hubungan terpenting yang ditemukan adalah bahwa lempeng litosferik yang lengket pada lempeng yang tersubduksi bergerak jauh lebih cepat daripada lempeng yang tidak. Misalnya, Lempeng Pasifik dikelilingi zona subduksi (Ring of Fire) sehingga bergerak jauh lebih cepat daripada lempeng di Atlantik yang lengket pada benua yang berdekatan dan bukan lempeng tersubduksi. Maka, gaya yang berhubungkan dengan lempeng yang bergerak ke bawah (slab pull dan slab suction) adalah kekuatan penggerak yang menentukan pergerakan lempeng kecuali untuk lempeng yang tidak disubduksikan. Walau bagaimanapun juga, kekuatan penggerak pergerakan lempeng itu sendiri masih menjadi bahan perdebatan dan riset para ilmuwan

Lempeng-lempeng utama

http://upload.wikimedia.org/wikipedia/commons/thumb/archive/b/b4/20110416105249%21Plate_tectonics_map.gif/350px-Plate_tectonics_map.gif
Peta lempeng-lempeng tektonik
Lempeng-lempeng tektonik utama yaitu:
Lempeng-lempeng penting lain yang lebih kecil mencakup Lempeng India, Lempeng Arabia, Lempeng Karibia, Lempeng Juan de Fuca, Lempeng Cocos, Lempeng Nazca, Lempeng Filipina, dan Lempeng Scotia.
Pergerakan lempeng telah menyebabkan pembentukan dan pemecahan benua seiring berjalannya waktu, termasuk juga pembentukan superkontinen yang mencakup hampir semua atau semua benua. Superkontinen Rodinia diperkirakan terbentuk 1 miliar tahun yang lalu dan mencakup hampir semua atau semua benua di Bumi dan terpecah menjadi delapan benua sekitar 600 juta tahun yang lalu. Delapan benua ini selanjutnya tersusun kembali menjadi superkontinen lain yang disebut Pangaea yang pada akhirnya juga terpecah menjadi Laurasia (yang menjadi Amerika Utara dan Eurasia), dan Gondwana (yang menjadi benua sisanya)



http://htmlimg3.scribdassets.com/hm4wa6yivlp37k/images/10-8b6833497f/000.jpg
Accidental pyroclasts : fragmen batuan berasal dari basement
(komposisi berbeda)
Fragmen:
1. Gelas/ Amorf
2. Litik
3. Kristalin
MINERAL-MINERAL ALTERASI
Alterasi = Metasomatisme
Merupakan perubahan komposisi mineralogy batuan (dalam keadaan
padat) karena pengaruh Suhu dan Tekanan yang tinggi dantidak
dalam kondisi isokimia menghasilkan mineral lempung, kuarsa,
oksida atau sulfida logam.
Proses alterasi merupakan peristiwa sekunder, tidak selayaknya metamorfisme yang merupakan peristiwa primer. Alterasi terjadi pada intrusi batuan beku yang mengalami pemanasan dan pada struktur tertentu yang memungkinkan masuknya air meteoric untuk dapat mengubah komposisi mineralogy batuan.
Beberapa contoh mineral alterasi antara lain:
K a lk opirit
Pirit
L im onit
G a rnie rit
E pidot e
Malakit
K h lorit
Orphim e nt
Realgar
Galena
BATUAN SEDIMEN
Batuan sedimen adalah batuan yang terbentuk dari pecahan atau hasil abrasi dari sedimen, batuan beku, metamorf yang tertransport dan terendapkan kemudian terlithifikasi.
Ada dua tipe sedimen yaitu:detritus dankimiawi. Detritus terdiri dari partikel-2 padat hasil dari pelapukan mekanis. Sedimen kimiawi terdiri dari mineral sebagai hasil kristalisasi larutan dengan proses inorganik atau aktivitas organisme. Partikel sedimen diklasifikasikan menurut ukuran butir, gravel (termasuk bolder, cobble dan pebble), pasir, lanau, dan lempung. Transportasi dari sedimen menyebabkan pembundaran dengan cara abrasi dan pemilahan (sorting). Nilai kebundaran dan sorting sangat tergantung pada ukuran butir, jarak transportasi dan proses pengendapan. Proses litifikasi dari sedimen menjadi batuan sedimen terjadi melalui kompaksi dan sementasi.
Batuan sedimen dapat dibagi menjadi 3 golongan:
1. Batuan sedimen klastik terbentuk dari fragmen batuan lain
ataupun mineral
2. Batuan sedimen kimiawi terbentuk karena penguapan,
evaporasi
3. Batuan sedimen organic terbentuk dari sisa-sisa kehidupan
hewan/ tumbuhan
Klasifikasi batuan sedimen klastik adalah berdasarkan besar butirnya,
oleh karenanya digunakan skala Wentworth. Sedangkan untuk

ROCK CYCLE / SIKLUS BATUAN

oum_rock.gifrock_cycle.jpgSebelumnya kita sudah tahu bahwa di bumi ada tiga jenis batuan yaitu batuan beku, batuan sedimen, dan batuan metamorf. Ketiga batuan tersebut dapat berubah menjadi batuan metamorf tetapi ketiganya juga bisa berubah menjadi batuan lainnya. Semua batuan akan mengalami pelapukan dan erosi menjadi partikel-partikel atau pecahan-pecahan yang lebih kecil yang akhirnya juga bisa membentuk batuan sedimen. Batuan juga bisa melebur atau meleleh menjadi magma dan kemudian kembali menjadi batuan beku. Kesemuanya ini disebut siklus batuan atau ROCK CYCLE.
 weathering.jpgSemua batuan yang ada di permukaan bumi akan mengalami pelapukan. Penyebab pelapukan tersebut ada 3 macam:
  1. Pelapukan secara fisika: perubahan suhu dari panas ke dingin akan membuat batuan mengalami perubahan. Hujan pun juga dapat membuat rekahan-rekahan yang ada di batuan menjadi berkembang sehingga proses-proses fisika tersebut dapat membuat batuan pecah menjadi bagian yang lebih kecil lagi.
  2. Pelapukan secara kimia: beberapa jenis larutan kimia dapat bereaksi dengan batuan seperti contohnya larutan HCl akan bereaksi dengan batu gamping. Bahkan air pun dapat bereaksi melarutan beberapa jenis batuan. Salah satu contoh yang nyata adalah “hujan asam” yang sangat mempengaruhi terjadinya pelapukan secara kimia.
  3. Pelapukan secara biologi: Selain pelapukan yang terjadi akibat proses fisikan dan kimia, salah satu pelapukan yang dapat terjadi adalah pelapukan secara biologi. Salah satu contohnya adalah pelapukan yang disebabkan oleh gangguan dari akar tanaman yang cukup besar. Akar-akar tanaman yang besar ini mampu membuat rekahan-rekahan di batuan dan akhirnya dapat memecah batuan menjadi bagian yang lebih kecil lagi.
erosion.jpgSetelah batuan mengalami pelapukan, batuan-batuan tersebut akan pecah menjadi bagian yang lebih kecil lagi sehingga mudah untuk berpindah tempat. Berpindahnya tempat dari partikel-partikel kecil ini disebut erosi. Proses erosi ini dapat terjadi melalui beberapa cara:
  1. Akibat grafitasi: akibat adanya grafitasi bumi maka pecahan batuan yang ada bisa langsung jatuh ke permukaan tanah atau menggelinding melalui tebing sampai akhirnya terkumpul di permukaan tanah.
  2. Akibat air: air yang melewati pecahan-pecahan kecil batuan yang ada dapat mengangkut pecahan tersebut dari satu tempat ke tempat yang lain. Salah satu contoh yang dapat diamati dengan jelas adalah peranan sungai dalam mengangkut pecahan-pecahan batuan yang kecil ini.
  3. Akibat angin: selain air, angin pun dapat mengangkut pecahan-pecahan batuan yang kecil ukurannya seperti halnya yang saat ini terjadi di daerah gurun.
  4. Akibat glasier: sungai es atau yang sering disebut glasier seperti yang ada di Alaska sekarang juga mampu memindahkan pecahan-pecahan batuan yang ada.
deposition.jpgPecahan-pecahan batuan yang terbawa akibat erosi tidak dapat terbawa selamanya. Seperti halnya sungai akan bertemu laut, angin akan berkurang tiupannya, dan juga glasier akan meleleh. Akibat semua ini, maka pecahan batuan yang terbawa akan terendapkan. Proses ini yang sering disebut proses pengendapan. Selama proses pengendapan, pecahan batuan akan diendapkan secara berlapis dimana pecahan yang berat akan diendapkan terlebih dahulu baru kemudian diikuti pecahan yang lebih ringan dan seterusnya. Proses pengendapan ini akan membentuk perlapisan pada batuan yang sering kita lihat di batuan sedimen saat ini. 
Pada saat perlapisan di batuan sedimen ini terbentuk, tekanan yang ada di perlapisan yang paling bawah akan bertambah akibat pertambahan beban di atasnya. Akibat pertambahan tekanan ini, air yang ada dalam lapisan-lapisan batuan akan tertekan sehingga keluar dari lapisan batuan yang ada. Proses ini sering disebut kompaksi. Pada saat yang bersamaan pula, partikel-partikel yang ada dalam lapisan mulai bersatu. Adanya semen seperti lempung, silika, atau kalsit diantara partikel-partikel yang ada membuat partikel tersebut menyatu membentuk batuan yang lebih keras. Proses ini sering disebut sementasi. Setelah proses kompaksi dan sementasi terjadi pada pecahan batuan yang ada, perlapisan sedimen yang ada sebelumnya berganti menjadi batuan sedimen yang berlapis-lapis. Batuan sedimen seperti batu pasir, batu lempung, dan batu gamping dapat dibedakan dari batuan lainnya melalui adanya perlapisan, butiran-butiran sedimen yang menjadi satu akibat adanya semen, dan juga adanya fosil yang ikut terendapkan saat pecahan batuan dan fosil mengalami proses erosi, kompaksi dan akhirnya tersementasikan bersama-sama. 
metamorphism.jpgPada kerak bumi yang cukup dalam, tekanan dan suhu yang ada sangatlah tinggi. Kondisi tekanan dan suhu yang sangat tinggi seperti ini dapat mengubah mineral yang dalam batuan. Proses ini sering disebut proses metamorfisme. Semua batuan yang ada dapat mengalami proses metamorfisme. Tingkat proses metamorfisme yang terjadi tergantung dari:
  1. Apakah batuan yang ada terkena efek tekanan dan atau suhu yang tinggi.
  2. Apakah batuan tersebut mengalami perubahan bentuk.
  3. Berapa lama batuan yang ada terkena tekanan dan suhu yang tinggi.
melting.jpgDengan bertambahnya dalam suatu batuan dalam bumi, kemungkinan batuan yang ada melebur kembali menjadi magma sangatlah besar. Ini karena tekanan dan suhu yang sangat tinggi pada kedalaman yang sangat dalam. Akibat densitas dari magma yang terbentuk lebih kecil dari batuan sekitarnya, maka magma tersebut akan mencoba kembali ke permukaan menembus kerak bumi yang ada. Magma juga terbentuk di bawah kerak bumi yaitu di mantle bumi. Magma ini juga akan berusaha menerobos kerak bumi untuk kemudian berkumpul dengan magma yang sudah terbentuk sebelumnya dan selanjutnya berusaha menerobos kerak bumi untuk membentuk batuan beku baik itu plutonik ataupun vulkanik. 
extrusive.jpgKadang-kadang magma mampu menerobos sampai ke permukaan bumi melalui rekahan atau patahan yang ada di bumi. Pada saat magma mampu menembus permukaan bumi, maka kadang terbentuk ledakan atau sering disebut volcanic eruption. Proses ini sering disebut proses ekstrusif. Batuan yang terbentuk dari magma yang keluar ke permukaan disebut batuan beku ekstrusif. Basalt dan pumice (batu apung) adalah salah satu contoh batuan ekstrusif. Jenis batuan yang terbentuk akibat proses ini tergantung dari komposisi magma yang ada. Umumnya batuan beku ekstrusif memperlihatkan cirri-ciri berikut:
  1. Butirannya sangatlah kecil. Ini disebabkan magma yang keluar ke permukaan bumi mengalami proses pendinginan yang sangat cepat sehingga mineral-mineral yang ada sebagai penyusun batuan tidak mempunyai banyak waktu untuk dapat berkembang.
  2. Umumnya memperlihatkan adanya rongga-rongga yang terbentuk akibat gas yang terkandung dalam batuan atau yang sering disebut “gas bubble”.
intrusive.jpgBatuan yang meleleh akibat tekanan dan suhu yang sangat tinggi sering membentuk magma chamber dalam kerak bumi. Magma ini bercampur dengan magma yang terbentuk dari mantle. Karena letak magma chamber yang relatif dalam dan tidak mengalami proses ekstrusif, maka magma yang ada mengalami proses pendinginan yang relatif lambat dan membentuk kristal-kristal mineral yang akhirnya membentuk batuan beku intrusif. Batuan beku intrusif dapat tersingkap di permukaan membentuk pluton. Salah satu jenis pluton terbesar yang tersingkap dengan jelas adalah batholit seperti yang ada di Sierra Nevada – USA yang merupakan batholit granit yang sangat besar. Gabbro juga salah satu contoh batuan intrusif. Jenis batuan yang terbentuk akibat proses ini tergantung dari komposisi magma yang ada. Umumnya batuan beku intrusif memperlihatkan cirri-ciri berikut:
  1. Butirannya cukup besar. Ini disebabkan magma yang keluar ke permukaan bumi mengalami proses pendinginan yang sangat lambat sehingga mineral-mineral yang ada sebagai penyusun batuan mempunyai banyak waktu untuk dapat berkembang.
  2. Biasanya mineral-mineral pembentuk batuan beku intrusif memperlihatkan angular interlocking.
Proses-proses inilah semua yang terjadi dimasa lampau, sekarang, dan yang akan datang. Terjadinya proses-proses ini menjaga keseimbangan batuan yang ada di bumi.






Geologi struktur


http://upload.wikimedia.org/wikipedia/commons/thumb/b/b2/Agiospavlos_DM_2004_IMG003_Felsenformation_nahe.JPG/220px-Agiospavlos_DM_2004_IMG003_Felsenformation_nahe.JPG

Formasi batuan terlipat, salah satu subjek studi geologi struktur
Geologi struktur adalah studi mengenai distribusi tiga dimensi tubuh batuan dan permukaannya yang datar ataupun terlipat, beserta susunan internalnya.
Geologi struktur mencakup bentuk permukaan yang juga dibahas pada studi geomorfologi, metamorfisme dan geologi rekayasa. Dengan mempelajari struktur tiga dimensi batuan dan daerah, dapat dibuat kesimpulan mengenai sejarah tektonik, lingkungan geologi pada masa lampau dan kejadian deformasinya. Hal ini dapat dipadukan pada waktu dengan menggunakan kontrol stratigrafi maupun geokronologi, untuk menentukan waktu pembentukan struktur tersebut.
Secara lebih formal dinyatakan sebagai cabang geologi yang berhubungan dengan proses geologi dimana suatu gaya telah menyebabkan transformasi bentuk, susunan, atau struktur internal batuan kedalam bentuk, susunan, atau susunan intenal yang lain.







Geomorfologi


Geomorfologi adalah sebuah studi ilmiah terhadap permukaan Bumi dan poses yang terjadi terhadapnya. Secara luas, berhubungan dengan landform (bentuk lahan) tererosi dari batuan yang keras, namun bentuk konstruksinya dibentuk oleh runtuhan batuan, dan terkadang oleh perolaku organisme di tempat mereka hidup. “Surface” (permukaan) jangan diartikan secara sempit; harus termasuk juga bagian kulit bumi yang paling jauh. Kenampakan subsurface terutama di daerah batugamping sangat penting dimana sistem gua terbentuk dan merupakan bagian yang integral dari geomorfologi.
Pengaruh dari erosi oleh: air, angin, dan es, berkolaborasi dengan latitude, ketinggian dan posisi relatif terhadap air laiut. Dapat dikatakan bahwa tiap daerah dengan iklim tertentu juga memiliki karakteristik pemandangan sendiri sebagai hasil dari erosi yang bekerja yang berbeda terhadap struktur geologi yang ada.
Torehan air terhadap lapisan batugamping yang keras dapat berupa aliran sungai yang permanen dan periodik, dapat juga merupakan alur drainase yang melewati bagian-bagian yang lemah. Sehingga membentuk cekungan-cekungan pada bagian yag tererosi dan meninggalkan bagian yang lebih tinggi yang susah tererosi. Ukuran dari cekungan dan tinggian ini bisa beberapa centimeter sampai beberapa kilometer.
Morfologi Makro
Dibawah ini adalah beberapa bentuk morfologi permukaan karst dalam ukuran meter sampai kilometer:
Swallow hole : Lokasi dimana aliran permukaan seluruhnya atau sebagian mulai menjadi aliran bawah permukaan yang terdapat pada batugamping. Swallow hole yang terdapat pada polje sering disebut ponor. (Marjorie M. Sweeting, 1972). Pengertian ini dipergunakan untuk menandai tempat dimana aliran air menghilang menuju bawah tanah. Sink hole : disebut juga doline, yaitu bentukan negatif yang dengan bentuk depresi atau mangkuk dengan diameter kecil sampai 1000 m lebih. (William B. White, 1988) Vertical shaft : pada bentuk ideal, merupakan silinder dengan dinding vertikal merombak perlapisan melawan inclinasi perlapisan. (William B. White, 1988) Collapse : runtuhan Cockpit : bentuk lembah yang ada di dalam cone karst daerah tropik yang lembab. Kontur cockpit tidak melingkar seperti pada doline tetapi seperti bentuk bintang dengan sisi-sisi yang identik, yang menunjukkan bahwa formasi cone merupakan faktor penentunya. (Alfred Bogli, 1978) Polje : depresi aksentip daerah karst, tertutup semua sisi, sebagian terdiri dari lantai yang rata, dengan batas-batas terjal di beberapa bagian dan dengan sudut yang nyata antara dasar/ lantai dengan tepi yang landai atau terjal itu.(Fink, Union Internationale de Speleologie) Uvala : cekungan karst yang luas, dasarnya lebar tidak rata (Cjivic, 1901) : lembah yang memanjang kadang-kadang berkelak-kelok, tetapi pada umumnya dengan dasar yang menyerupai cawan. (Lehman, 1970) Dry valley: terlihat seperti halnya lembah yang lainnya namun tidak ada aliran kecuali kadang-kadang setelah adanya es yang hebat diikuti oleh pencairan es yang cepat. (G.T. Warwick, 1976). Pulau Jawa memiliki kawasan karst yang cukup spesifik yaitu karst Gunung Sewu, dimana bentukan bukit-bukit seperti cawan terbalik (cone hill) dan kerucut (conical hill) begitu sempurna dengan lembah-lembahnya. Bukit merupakan residu erosi dan lembahnya adalah merupakan daerah diaman terjadi erosi aktif dari dulu sampai sekarang. Bagian-bagian depresi atau cekungan merupakan titik terendah dan menghilangnya air permukaan ke bawah permukaan. Erosi memperlebar struktur (lihat geologi gua dan teori terbentuknya gua), kekar, sesar, dan bidang lapisan, dan membentuk gua-gua, baik vertikal maupun horisontal. Gua-gua juga dapat terbentuk karena adanya mata air karst. Mata air (spring) karst ini ada beberapa jenis: Bedding spring, mata air yang terbentuk pada tempat dimana terjadi pelebaran bidang lapisan, Fracture spring, mata air yang terbentuk pada tempat dimana terjadi pelebaran bidang rekahan, Contact spring, mata air yang terbentuk karena adanya kontak antara batu gamping dan batu lain yang impermiabel. Disamping itu secara khusus ada jenis mata air yang berada di bawah permukaan air laut disebut dengan vrulja.
Morfologi mikro
Ada kawasan karst dengan sudut dip yang kecil dan permukaannya licin. Area ini dipisah-pisahkan dalam bentuk blok-blok oleh joint terbuka, disebut dengan grike-Bhs. Inggris, atau Kluftkarren-Bhs. Jerman. Bentukan-bentukan minor ini dalam bahasa Jerman memiliki akhiran karren (lapies-Bhs Perancis). Sering permukaan blok itu terpotong menjadi sebuah pola dendritic dari runnel dengan deretan dasar (round) dipisahkan oleh deretan punggungan (ridge) yang mengeringkannya kedalam grike terlebih dahulu. Juga terkadang mereka memiliki profil panjang yang hampir mulus. Bentukan ini disebut Rundkarren. Tipe lain adalah Rillenkarren yang memiliki saluran yang tajam, ujung punggungan dibatasi oleh deretan saluran berbentuk V. Biasanya nampak pada permukaan yag lebih curam daripada rundkarren, dengan saluran sub-paralel dan beberapa cabang. Microrillenkarren merupakan bentuk gabungan tetapi hanya memiliki panjang beberapa centimeter dan lebarnya 10-20 mm. Pseudo karren, memiliki bentuk sama dengan rundkarren dan rinnenkarren. Tetapi hanya terjadi pada granit di daerah tropik yang lembab. (Naufal Galih. P, 1999).








Paleontologi


Paleontologi adalah ilmu yang mempelajari tentang sejarah kehidupan di bumi termasuk hewan dan tumbuhan zaman lampau yang telah menjadi fosil.
GEOLOGI SEJARAH



*GEOLOGI SEJARAH: Ilmu yang membahas perkembangan bumi sebagai badan angkasa mulai dari terbentuknya hingga kini.

*Geologi --- arsitek fisik dan arsitek sejarah.

*Perkembangan yang terjadi di bumi:
-perkembangan pembentukan batuan
-perkembangan tektonik
-perkembangan biotik
-perkembangan unsur ekonomis


*Usia bumi 4,6 milyar tahun .

*Makhluk yang pertama 2,1 milyar tahun setelah pembentukan bumi.

*Fosil banyak dijumpai pada 600 juta tahun yang lalu.

*Evolusi di bumi --- evolusi kimia (awal Pre Cambrium) dan evolusi organik (berjalan sangat lama 2,501 milyar tahun yang lalu).

*TH 70’AN VS TH 80’AN:
Th 70’an : stabilism --- hanya mengenal orogenesa dan geosinklin.
Th 80’an : dinamycs --- plate tectonik.

*PEMBACAAN SEJARAH GEOLOGI:
1.Metode rekonstruksi
2.Memanfaatkan:
-prinsip stratigrafi
-evolusi organik
-konsep tektonik
-prinsip perubahan tinggi muka air laut (eustacy)
3.Open ending result
ever improving

*Rekaman peristiwa di bumi hanya 1/8 terakhir, selebihnya belum dapat diketahui karena:
-tanda-tanda yang berguna sedikit --- batuan pre Cambrium sedikit tersisa.
-batuan pre Cambrium banyak yang telah berubah --- metamorfisme, alterasi, intrusi.
-beberapa rekaman baik dalam bentuk fosil maupun dalam bentuk batuan sangat berlainan dengan apa yang ditemukan sekarang.

*TUJUAN KULIAH:
-tahu teori terbentuknya bumi
-tahu garis besar dari evolusi organik dan perkembangan geoteknik
-tahu jaman geologi utama:
~namanya
~urutannya
~peristiwa geologi yang mencirikan
~material ekonomi yang terbentuk

*ASAS STRATIGRAFI:
1.Uniformitarianism
2.The Law of Original Horizontality
3.The Law of Superposition
4.The Law of Cross Cutting Relationship
5.The Law of Inclution
6.The Law of Faunal Sucession
7.Strata Identified by Fossils

*UNIFORMITARIANS: Peristiwa yang terjadi pada masa geologi lampau dikontrol oleh hukum-hukum alam yang mengendalikan
peristiwa pada masa kini.
Contoh :
-endapan tuff adalah hasil aktivitas volkanik.
-soil adalah hasil pelapukan yang tidak langsung terkena erosi.
-Koral dan alga hidup di laut.

*Law of Original Horizontality : sedimen yang baru terbentuk cenderung mengikuti bentuk dasarnya dan cenderung untuk menghorizontal, kecuali cross bedding.

*Hukum steno tidak sepenuhnya salah jika dibandingkan dengan Hukum walter :
1.endapan pelagik di laut dalam (atau di danau) --- bercampur dengan butiran halus asal darat yang diterbangkan angin dan diendapkan jauh di laut.
2.Abu volkanik dari gunung api --- saat letusan diterbangkan kemudian jatuh di laut.

*Akomodasi :ruangan di bumi yang tersedia untuk tempat berkumpulnya (diendapkannya) sedimen
Faktor : subsidence, eustacy, deposition.
D : tidak pernah konstan, tidak pernah negatif, paling kecil nol.
S : naik aktif (karena gaya tektonik), naik pasif (karena sedimennnya sendiri sehingga membuat batimetri naik).
E : sepanjang sejarah tidak pernah konstan.

*Law of Superposition : dalam keadaan yang tidak terganggu, lapisan paling tua akan berada dibawah lapisan yang lebih muda.

*Principle of Lateral Accumulation : sebagian besar sedimen terbentuk dari akresi lateral.
Permukaan pengendapan biasanya miring. Akumulasi terjadi oleh proses akresi dan progradasi dan terjadi pada arah transport sedimen. Akumulasi bisa terjadi terus menerus, terjadi keadaan oversteepened yang membuat massa yang telah terakumulasi menjadi longsor sepanjang lereng.

*Principle of Cross Cutting Relationship: suatu batuan atau sesar yang memotong suatu batuan selalu lebih muda dari batuan yang terpotong. Batuan intrusi selalu lebih muda dari batuan yang diintrusi, kecuali diapir. Lipatan selalu lebih muda dari batuan yang terlipat. Efek panggang di lapangan yang tidak kelihatan: bataupasir kuarsa diterobos granit. Efek panggang yang sangat kelihatan: batugamping diterobos granit.

*Disconformity : sedimen dengan sedimen yang perlapisannya tetap sama tetapi dibatasi oleh bidang erosi.

*Law of Inclusion : suatu tubuh batuan yang mengandung fragmen dari batuan yang lain selalu lebih muda dari tubuh batuan yang menghasilkan fragmen tersebut.

*Strata identified by fossil : perlapisan batuan tertentu dicirikan oleh kandungan fosil tertentu.

*Principle of Faunal Succession : fosil-fosil yang dijumpai pada perlapisan batuan secara perlahan mengalami perubahan kenampakan fisiknya (akibat evolusi) dalam cara yang teratur mengikuti waktu geologi. Demikian pula suatu kelompok organisme secara perlahan digantikan oleh kelompok organisme yang lain. Suatu perlapisan tertentu dicirikan oleh kandungan fosil yang tertentu. Suatu perlapisan batuan yang mengandung fosil tertentu dapat digunakan untuk koreksi antara suatu lokasi dengan lokasi yang lain.

*Sampel yang diambil untuk analisa radioaktif :
1.tidak diambil di sembarang tempat.
2.diambil sampel yang banyak.
3.segar tidak lapuk.
4.tidak ada pecahan palu.
5.diambil pada sedimen tuff, yang belum kehilangan gelasnya.
6.pembekuan suatu mineral merupakan titik nol suatu peluruhan.

*Konsep tentang kemagnetan purba :
a.dilandasi suatu fakta bahwa bumi kita sebagai suatu badan magnet yang besar---akibat proses pembentukannya berotasi dengan adanya gaya tarik dalam benda angkasa lainnya --- terbentuklah suatu aliran elektron dalam bumi seolah-olah sebagai suatu batang magnet.
b.pada masa holosen dianggap sebagai kemagnetan normal.
c.kutub utara magnet berada di selatan, dan sebaliknya.
d.kutub magnet bumi terletak pada lintang 90? --- inklinasi.
e.kutub magnet tidak berimpit dengan kutub bumi --- deklinasi.
f.jika terjadi pembekuan magma atau sedimentasi material, maka akan terekam kondisi kemagnetan pada saat itu.
g.sampel diambil dari batuan beku atas yang berbutir halus.
h.pada saat material sedimentasi dalam masa mengambang, maka material tersebut akan memposisikan pada kondisi magnet bumi.
i.kondisi revest : kondisi pada jaman dahulu dimana kutub utara magnet bumi ada di utara dan kutub selatan magnet bumi ada di selatan.
j.magnetik epoch : satuan waktu yang dicirikan oleh kondisi kemagnetan yang sama --- diberi nama sesuai penemunya.


*Perubahan muka laut disebabkan :
1.pergerakan lempeng : Jika lempeng bergerak, maka ada celah, air laut akan masuk ke celah tersebut, sehingga muka air laut akan turun.
2.Glasiasi : akibat volkanisme maka pergerakan abu akan mengelilingi bumi, sehingga suhu bumi naik karena panas dari bumi tidak dapat dilepaskan ke angkasa. Akibat kenaikan global dari suhu bumi tersebut, maka terjadi pencairan es secara global, demikian pula sebaliknya.
3.Beda letak rotasi bumi : pusat bumi pada kondisi minimal menyebabkan es banyak, demikian pula sebaliknya.


*Gejala glasiasi : adanya goresan-goresan pada bed rosk yang intensif, tetapi bikan striasi fault. Adanya block yang besar ditengah-tengah yang halus tetapi tidak ada tanda-tanda gerakan (disebut drop stone).

*Teori pembentukan bumi :
Big Bang :
Fakta : materi alam semesta menjauhi suatu titik. Hidrogen dan helium merupakan isi ruang alam semesta.
Simulasi : Arah gerakan ditarik dengan kecepatan yang sama.
Hasil : Alam semesta pada 13-15 x 109 tahun berupa materi yang sangat padat, suhu sangat tinggi, penyusunnya berupa partikel yang belum membentuk unsur.Pada suatu saat meletus --- “Big Bang”

PREKAMBRIUM :
-Ciri khas prekambrium akhir adalah banyaknya concolite.
-Kondisi tektonik : bumi kita masih merupakan bentukan baru yang keras, plate tektonik belum terbentuk meski segresi magma telah ada. Menjelang proterozoik terbentuk benua (benua pangea I) yang superbesar. Pange tersebut kemudian mengalami pemisahan. Pemisahan yang terjadi karena rifting membentuk beua-benua Gondwana yang pada waktu itu terpisah dari baguan utaranya yaitu
benua Laurentia dan membentuk suatu laut yaitu laut Iapetus. Laut iapetus memisahkan antara benua Gondwana dengan benua Laurentia. Hampir semua benua yang cerai-berai berkumpul di equator atau di utara equator. Benua Antartika pada saat itu juga berada di uatar equator.
-Pada akhir proterozoik banyak algae yang terdapat dalam tromatolit.
-Stromatolit adalah struktur yang dibentuk oleh algae (ganggang yang bersifat menambatkan diri dan berada sebagai kerak).
-Pada akhir prekambrium diduga telah terjadi evolusi organik akibat pemisahan benua-benua, sehingga mulai terjadi kelompok-kelompok organisme yang saling menyesuaikan diri pada tempatnyansehingga terjadi suatu pengembangan organisme-organisme baru.
-Pada saat itu terjadi proses spesiality dan terjadi perkembangan biologis dari protozoa menjadi metazoa.
-Pada akhir pre kambrium terjadi variasi organisme yang hebat yaitu dari fauna Ediacara.
-Kesulitan yang terjadi dalam memperkirakan apa yang terjadi padamasa antara prekambrium dengan kambrium adalah banyaknya batuan kambrium yang berada diatas batuan pre kambrium secara tidak selaras.

PALEOZOIK

Merupakan kurun yang sangat unik, bumi kita mengalami sejumlah perubahan yang sifatnya divergen dan konvergen, implikasinya
terjadi sejumlah orogen pada fase subdaksi dan cilision. Terdiri atas :
KAMBRIUM :
-Pada awal kambrium glasiasi mulai menyusut.
-Fosil :
graptolites --- sekarang sudah punah, fosilnya berupa cetakan.
Trilobita, Echinodermata
Archeociata --- ada yang memasukkan dalam Archeochiatite, khas untuk kambrium.
-Ada kepunahan yang tidak terlalu besar pada akhir kambrium.
-Terjadi kenaikan muka laut.
-Akhir kambrium muncul golongan molusca sub klas Nautiloid, klas Pelecypoda.
-Akhir kembrium terdapat sedikit kepunahan dari beberapa trilobita dan bebrapa Nautiloid.


ORDOVICIAN :

-Di benua Gondwana bagian tengah terdapat kondisi gurun.
-Pada Ordovician kondisi muka laut lebih tinggi daripada pada saat Cambrian, yang memungkinkan terjadinya diversifikasi fauna laut.
-Benua saling berdekatan.
-Oksigen makin bertambah, koral berkembang dengan jenis Rugosa dan Tabulata.
-Brachiopoda berkembang pesat.
-Gratolith dengan bentuk mata gergaji.


SILURIAN

-Benua yang saling berdekatan akhirnya tabrakan, terjadi pegunungan Kaledonia.
-Kondisi Gondwana yang tetapejal semakin ke arah selatan --- mengalami kondisi klimat/kutub.
-Amerika uatara dan Eropa berada di daerah equator.
-Mongolia berada pada posisi 30? Lu.
-Terjadi suatu glasiasi yang meliputi Amerika Selatan, Afrika Selatan, Antartika, dan sebagian India.
-Pada cratonnya yaitu Amerika Utara terdapat gamping silur yang cukup tebal yang sekarang merupakan bagian dari Niagara.
-Pada bagian daratan di Amerika Utara mulai muncul tumbuhan darat.
-Pada awal silur tumbuhan darat merajalela, tetapi tipe tanamannya belum berbunga, misal : tipe paku-pakuan.
-Di laut terjadi marine adaptive radiation.


DEVON :

-Pada awal Devon terjadi sea level drop yang global dan sempat mematikan beberapa organisme Carbon.
-Pada awal Devon golongan ikan muncul, juga golongan insekta.
-Berkembang terumbu karang golongan Tabulata.
-Mulai muncul pohon besar.
-Benua Gondwana belum banyak beranjak dari kutub. Amerika Utara sebagian besar di equator dan mulai mendekati Gondwana.
-Penunjaman terjadi pada tepian Gondwana yang bergerak, dan menghasilkan satu rangkaian pegunungan yang membentang dari
Australia Timur, Antartika, Afrika Selatan.
-Andes mulai terbentuk.
-Iapetus mulai tertutup, Theic sudah semakin sempit.
-Terjadi convergency global, benua-benua saling mendekati.
-Terjadi orogenesa yang dianggap global.
-Di Amerika Utara terjadi Orogenesa Anthles.
-Theic yang sudah mulai menutup mengalami kolisi.
-Amerika selatan yang menjadi satu dengan Afrika berdempetan dengan Amerika Utara membentuk deretan pegunungan Hercinia di
Eropa, fase orogenik Aphalacia di Amerika.
-Benua semakin menjadi satu.
-Celah yang masih tersisa adalah celah Ural.
-Terjadi teluk yang besar yang disebut Teluk Thethys.
-Pada akhir Devon mulai dijumpai tumbuhan yang hidup di darat.

KARBON :
-Pada awal Karbon terjadi genang laut yang relatif tinggi sehingga dimana-mana terdapat laut yang cukup dangkal. Masih berkembang Amonit dan Gasthropoda.
-Tumbuhan makin banyak dan mulai menyesuaikan dengan tempatnya.
-antara selatan dan utara pohonnnya berbeda akibat adanya iklim yang berlainan.
-Pada akhir Karbon bawah terjadi suatu susut laut yang hebat, yang sangat berpengaruh pada iklim global dan terjadi kepunahan massal.
-Tempat di pinggiran benua yang semula laut berubah menjadi rawa dan di rawa tersebut terjadi pertumbuhan golongan-golongan tumbuhan rawa.
-Pada jaman Karbon atas sudah ada capung.
-Ada golongan ikan yang mulai naik kedarat dan berkembang menjadi amphibi dan reptil.
-Mulai muncul Foram besar jenis Fusulina.

PERM :
-Benua Asia masih belum bergabung.
-Terbentuk Pegunungan Ural.
-Secara umum terbentuk mega continet yang membentang hampir dari kutub utara ke kutub selatan.
-Lekukan Thethys persis berada di equator, sedimen yang diendapkan menunjukkan sedimen air panas.
-Batuan perm-nya menunjukkan tipe endapan laut rtropis, banyak terumbu, pada terumbu tersebut banyak tumbuh jenis foram besar dari jenis Fusulina.
-Golongan Fusulina berkembang pesat dan punah pada akhir Perm.
-Akhir Perm ditandai dengan kepunahan massal.


MESOZOIK
Sering disebut sebagai jaman reptil. Terdiri atas :

TRIAS :
-Trias = batuan yang secara jelas terbagi tida.
-Terbagi menjadi tiga, yaitu Trias Awal, Trias Tengah dan Trias Akhir.
-Kondisi sea level dari trias ke kapur cenderung naik, meskipun pada Trias juga terjadi susut laut.
-Gondwana dan Lauretia sedikit demi sedikit mulai mengalami rifting terutama di bagian timur dimana terjadi penjorokan laut Tetis.
-Amerika utara dan Eropa mulai merenggang.
-Benua-benua makin pecah, implikasinya : terjadi provinsialisasi yaitu pengelompokan wilayah-wilayah kehidupan flora dan fauna.
-pada aewal pemekaran terjadi pembentukan evaporit, sehingga banyak kubah garam yang merupakan perangkap hidrokarbon.
-Coccolith mulai muncul.

JURA :
*Jura : batuan yang pertama kali ditemukan di Pegunungan Jura.
*Samudra Atlantik semakin membuka ke arah utara.
*Tetis menjadi semakin ke arah selatan.
*Cina berada di sekitar katulistiwa.
*Cordilena dan Andes terus terbentuk.
*mulai muncul plankton.

KAPUR :
*Melimpah akan kapur.
*Jaman dimana iklimnya paling baik.
*Pemekaran dari benua Pange sudah lebih hebat.
*Amerika utara dan Amerika Selatan masih belum menyambung.
*Benua-benua menjadi seperti pulau-pulau.
*Kondisi pembagian iklim tidak terjadi.
*Arus terjadi dimana-mana, akibatnya semua laut di semua lintang suhunya hampir sama. Iklim di semua posisi hampir sama, secara umum tepian benua mengalami kenaikan mula laut.
*Distribusi flora dan fauna paling ideal.
*Laut dangkal eterjadi dimana-mana, penuh dengan organisme pembentuk karbonat.
*Coccolith dan foraminifera plankton banyak, sehingga pengendapan karbonat intensif sekali, sehingga pengendapan kapur terjadi dimanan-mana, bahkan sampai di laut utara.
*Hidup golongan molusca yang membentuk terumbu yang disebut Rudist (jenis molusca yang hanya terdapat pada kapur dan punah pada akhir kapur).
*Karbonat terumbu didominasi dari golongan Rudist.
*Karbonat Cretaceous kaya akan hidrokarbon.
*Selama Kapur terjadi 3 kali oceanic Anorsic Event yaitu 1 kali di bagian bawah dan 2 kali di bagian atas.
*Dalam kondisi normal di laut terjadi 2 macam sirkulasi yaitu lateral dan vertikal (sangat ditentukan oleh suhu). Air yang dingin akan tenggelam, air yang hangat akan berada di atas,sehingga terjadi sirkulasi.Maka oksigen yang ada di permukaan akan disirkulasikan sampai ke dasar, akibatnya di dasar laut akan terjadi oksidasi, sehingga laut memiliki ventilasi yang baik. Jika hal tersebut tidak terjadi karena di semua bagian airnya hangat, maka akan terjadi layer-layer pada lautnya yaitu bagian atas kaya akan oksigen dan bagian bawah non oksigen, akibatnya di dasar terjadi reduksi, sehingga organiknya membentuk lempung hitan yang luas, sedang di lain tempat yang relatif dangkal ada reef, sehingga terjadi lapisan minyak yang cukup besar.
*Kapur merupakan jaman dimana terbentuk calon-calon batuan induk.
*Bunga mulai muncul.
*Mamalia mulai berkembang pesat.
*Golongan bunga-bungaan berkompetisi dengan golongan paku-pakuan, sehingga ada hutan hujan tropis.
*Golongan rumput belum muncul.
*Karena banyaknya bunga maka di laut banyak pollen.
*Pada akhir kapur diduga bumi bertumbukan dengan meteor yang besar yang mempunyai diameter > 10 km yang terjadi di sekitar Mexico.
*Akibat hempasan meteor tersebut terjadi penyebaran unsur meteorik (Iridium).
*Batuan transisi dari Kapur ke Tersier dibanyak tempat terdapat lempung yang konsentrasi iridiumnya 30 x lebih tinggi daripada batuan normal. Hal tersebut diindikasikan akibat dari hempasan meteor.
*Pada akhir Kapur ada kepunahan massal akibat pollen yang banyak di udara, akibat adanya efek rumah kaca yang disebabkan adanya
hempasan meteor, dan adanya predator.
*Semua golongan Rudist, Dinosaurus punah. Banyak Coccolith, Ammonit, Globotruncana punah.
*Golongan mamalia mulai mengambil alih.
*Ada 2 binatang yang tetap ada yaitu kecoa dan capung.
*Pada akhir Kapur pemecahan benua semakin merajalela, proses subdaksi berjalan sangat intensif, produksi abu sangat banyak akibat
aktivitas volkanik sehingga bumi seolah-olah tersaput abu, akibatnya sinar matahari tidak dapat menembus dan terjadi efek rumah es
(suhu dingin). Hal tersebut juga diperkirakan penyebab punahnya organisme.

KENOZOIK
*Merupakan era mamalia.
*Terbagi menjadi 2 periode : Paleogen dan Neogen.
*Paleogen terdiri dari Paleocene, Eocene, Oligocene.
*Neogen terdiri dari Miocene, Pliocene, Pleistocene.
*Pada awal Kenozoik terjadi proses heteriosasi yaitu perusakan iklim, yang semula hangat menjadi dingin.
*Pada akhir Kenozoik terjadi proses orogenesa Larami.
*Pada awal Paleocene muncul primata (hampir bersamaan dengan munculnya nannoplakton jenis Discoaster).
*Pada Eocene muncul golongan kuda dan mulai muncul bunga-bunga yang spesifik antara lain bunga mawar.
*Muncul golongan Nummulites yang berasosiasi dengan terumbu.
*Pada Paleogene Super Pangea yang sudah pecah-pecah mulai membentuk bangun yang hampir sama dengan keadaan sekarang.
*terjadi suatu sistem arus Agulhar dan Daulstream.
*Australia mulai melepaskan diri dari Antartika.
*Selandia Baru mulai melepaskan diri dari Australian.
*Mulai terbentuk subdaksi-subdaksi awal di New Zeeland.
*Arabia masih menempel di Afrika.
*Thetis makin sempit dan akan membentuk rangkaian pegunungan, antara lain Himalaya.
*bagian-bagian dari thetis masih tersisa, antara lain Baikal, Kaspia, Laut Tengah.
*Laut Tengah pada suatu ketika pernah kering, yaitu saat Gibraltar bertumbukan dengan Afrika, menjadi padang garan yang luas.
*Pada Neogen selat Gibraltar pecah, sehingga air dari samudra Atraltik masuk ke laut Tengah dengan kecepatan yang sangat besar (diketahui dari struktur sedimen yang membatasi evaporit dengan sedimen sekarang).
*menjelang akhir Oligocene terjadi susut laut yang sangat besar. Implikasinya :
cuaca makin dingin.Tersingkap banyak paparan benua sedimen yag terbentuk setelah exposed tersebut dicirikan oleh sedimen-sedimen klastik yang sangat tebal.Pada saat tersebut di Indonesia masih terbentuk subdaksi, sehingga terbentuk deretan pegunungan yang mengalami erosi, sehingga pada awal Eocene terdapat pengendapan klastik yang besar (tipe turbidit, debris flow, dan tipe volkanik).
*Terjadi proses genag laut kembali sehingga shelf yang tadinya terbentuk menjadi tergenang kembali, sehingga terjadi ketidakselarasan.
*Pra Miocene tengah banyak menghasilkan gamping.
*Batuan Pra Miocene dengan Miocene Tengah ada yang selaras dan ada yang tidak selaras.
*Pada akhir Pliocene bumi mengalami pendinginan, sehingga terjadi sejumlah es.
*Pada jaman Neogen konfigurasi bumi sudah mirip dengan sekarang, termasuk Indonesia. Jasirah Arabia mulai melepaskan diri dari Afrika. Tripple Suction terjadi di daratan Affard (Somalia). Affard mengalami rifting tiga lengan.
*Mulai Miocene daerah rifting tersebut menjadi alluvial valley.
*Di daerah danau Turkana, di lembah Oldoval terdapat singkapan endapan fluviatil yang besar dan tersimpan fosil.
*Pada awal Pliocene Indonesia masih merupakan benua yang besar.
*Pada awal Kenozoik muncul organisme yang sebelumnya belum ada yaitu primata (hominid).
*Pada awal Miocene golongan Ramaphitecus memisah.
*Jaman Pleistocene dijuluki sebagai jaman Anthropocene





BENCANA GEOLOGI

Geologi Bencana meliputi kegiatan sebagai berikut :
- Studi bahaya gerakan tanah.
- Studi bahaya neo-tektonik.
- Studi bahaya gunung api.

http://www.batan.go.id/ppgn/Geologi%20Bencana30%25.JPG


http://www.batan.go.id/ppgn/geologi_bencana_files/image001.gif



ATMOSFER

Struktur Atmosfer

Atmosfer adalah Lapisan gas atau campuran gas yang menyelimuti dan terikat pada bumi oleh gaya gravitasi bumi.
Di bumi, atmosfer terdapat dari ketinggian 0 km di atas permukaan tanah, sampai dengan sekitar 560 km dari atas permukaan bumi. Atmosfer Bumi terdiri atas nitrogen (78.17%) dan oksigen (20.97%), dengan sedikit argon (0.9%),karbondioksida (variabel, tetapi sekitar 0.0357%),uap air, dan gas lainnya.
Distribusi suhu lawan ketinggian
Pengukuran suhu lapisan atmosfer antara permukaan bumi dan ketinggian 30 km menggunakan radiosonde. Untuk lapisan atmosfer antara ketinggian 30 km dan 90 km pengukuran dilakukan dengan menggunakan roket, sedangkan di atas ketinggian 90 km menggunakan satelit.

Troposfer

Lapisan ini berada pada level yang terendah, campuran gasnya paling ideal untuk menopang kehidupan di bumi. Di dalam t Dalam lapisan ini kehidupan terlindung dari sengatan radiasi yang dipancarkan oleh benda-benda langit lain. Dibandingkan dengan lapisan atmosfer yang lain, lapisan ini adalah yang paling tipis (kurang lebih 15 kilometer dari permukaan tanah). Dalam lapisan ini, hampir semua jenis cuaca, perubahan suhu yang mendadak, angina, tekanan dan kelembaban yang kita rasakan sehari-hari berlangsung. Diantara troposfer dan stratosfer terdapat lapisan yang disebut lapisan Tropopouse.

Stratosfer

Perubahan secara bertahap dari troposfer ke stratosfer dimulai dari ketinggian sekitar 11 km. Suhu di lapisan stratosfer yang paling bawah relatif stabil dan sangat dingin yaitu - 70oF atau sekitar - 57oC. Dari bagian tengah stratosfer keatas, pola suhunya berubah menjadi semakin bertambah semakin naik, karena bertambahnya lapisan dengan konsentrasi ozon yang bertambah. Suhu pada lapisan ini bisa mencapai sekitar 18oC pada ketinggian sekitar 40 km. Lapisan stratopause memisahkan stratosfer dengan lapisan berikutnya.

Mesosfer

Sekitar 40km diatas permukaan bumi terdapat lapisan transisi menuju lapisan mesosfer. Pada lapisan ini, suhu kembali turun ketika ketinggian bertambah, sampai menjadi sekitar - 143oC di dekat bagian atas dari lapisan ini, yaitu kurang lebih 81 km diatas permukaan bumi. Diantara mesosfer dan termosfer terdapat lapisan yang disebut lapisan mesopause.

Termosfer

Transisi dari mesosfer ke termosfer dimulai pada ketinggian sekitar 81 km. Dinamai termosfer karena terjadi kenaikan temperatur yang cukup tinggi pada lapisan ini yaitu sekitar 1982oC. Perubahan ini terjadi karena serapan radiasi sinar ultra ungu. Radiasi ini menyebabkan reaksi kimia sehingga membentuk lapisan bermuatan listrik yang dikenal dengan nama ionosfer yang dapat memantulkan gelombang radio. Sebelum munculnya era satelit, lapisan ini berguna untuk membantu memancarkan gelombang radio jarak jauh.
http://www.cuacajateng.com/images/strukturatmosfer.jpg

Proses Terbentuknya Awan dan Hujan.


Hujan adalah tetesan air dari udara yang jatuh di atas permukaan bumi. Proses terbentuknya hujan diawali dengan pembentukan awan. Awan itu sendiri terbentuk dari titik-titik uap air dari bumi (misalkan uap air laut) yang berkumpul di udara dan menempel pada media yang bisa ditempeli oleh uap air tersebut dalam ketinggian tertentu di atas permukaan bumi. Media yang dapat ditempeli oleh partikel-pertikel uap air tersebut biasanya adalah partikel garam dari lautan, atau asap dari bumi sehingga kumpulan partikel uap air tersebut membentuk gumpalan awan yang besar. Awan ini merupakan bibit hujan yang bergerak sesuai dengan arah tiupan angin.

Awan hangat yang terbentuk dari partikel air dapat menyebabkan terjadinya hujan gerimis. Awan hangat ini dapat jatuh ke permukaan bumi karena pengaruh gravitasi dan saat jatuh ke bumi masih berwujud kumpulan partikel air yang kecil. Dalam perjalanan jatuh ke bumi, kumpulan partikel air ini ada yang menguap dalam perjalanan sehingga ia tidak sampai ke permukaan bumi, akan tetapi ada juga yang dapat sampai ke permukaan bumi sehingga membentuk hujan gerimis.

Awan hangat juga dapat membentuk hujan lebat, proses terjadinya dimulai saat partikel air dari awan hangat ini jatuh kedalam awan yang berada dibawahnya dan saling bertabrakan sehingga membentuk tetesan air yang lebih besar. Tetesan air yang jatuh ke bumi ini dapat bergabung dengan tetesan dari awan lain sehingga membentuk hujan yang lebat.

Selain terbentuk dari awan hangat, hujan lebat juga dapat terbentuk dari awan dingin yang terbentuk dari kristal es dan partikel air yang berada jauh lebih tinggi dari pada awan hangat. Uap air atau partikel air akan menempel pada kristal es dan ikut membeku sehingga kristal es ini semakin membesar dan berat. Karena kristal es tersebut semakin besar karena tertempeli oleh uap air yang ikut membeku, maka ia akan semakin berat dan akhirnya jatuh ke permukaan bumi. Dalam perjalanan jatuh, udara yang hangat akan mencairkan kristal es tersebut sehingga yang jatuh ke permukaan bumi hanya berwujud tetesan air atau hujan yang lebat. Bila udara yang dilewati kristal es ini ketika jatuh dingin (misalnya didaerah yang beriklim dingin) maka kristal es ini akan jatuh tetap pada wujud kristal, dan yang terjadi adalah hujan salju


http://2.bp.blogspot.com/_KyvvRAMhmIo/SwFzK_3vWfI/AAAAAAAAAAM/c2WRtGRmk-k/s320/wcmaindiagram2.jpg
Proses kondensasi dan pembentukan awan di daerah tropis dan di daerah lintang menengah dan tinggi mempunyai perbedaan yang menyolok. Di daerah tropis umumnya proses kondensasi dan pembentukan awan dapat terjadi pada suhu tinggi ( > 0 C) melalui pengangkatan udara atau konveksi yang diakibatkan oleh pemanasan yang kuat. Sedang di daerah lintang menengah dan tinggi proses yang terjadi umumnya karena adanya front yaitu pertemuan massa udara panas dan massa udara dingin1.

Cuaca di daerah tropis ditandai dengan perubahan yang cepat dan mendadak. Hal ini disebabkan oleh berbagai hal seperti adanya garis ekuator dimana gaya coriolli mendekati nol, adanya ITCZ, ridge dan through, awan-awan konvektif, sel hadley dan sirkulasi walker.

Proses Kondensasi

Dalam atmosfer tetes awan terbentuk pada aerosol yang berfungsi sebagai inti kondensasi atau inti pengembunan. Kecepatan pembentukan tetes tersebut ditentukan oleh banyaknya inti kondensasi. Proses dimana tetes air dari fasa uap terbentuk pada inti kondensasi disebut pengintian heterogen. Adapun pembentukan tetes air dari fasa uap dalam suatu lingkungan murni yang memerlukan kondisi sangat jenuh (supersaturation) disebut pengintian homogen.

Pengintian homogen yaitu pembekuan pada air murni hanya akan terjadi pada suhu dibawah -40 0C. Akan tetapi dengan keberadaan aerosol sebagai inti kondensasi maka pembekuan dapat terjadi pada suhu hanya beberapa derajat dibawah 0 0C2.

Inti kondensasi adalah partikel padat atau cair yang dapat berupa debu, asap, belerang dioksida, garam laut (NaCl) atau benda mikroskopik lainnya yang bersifat higroskopis, dengan ukuran 0,001 mm – 10 mm.

Secara singkat proses kondensasi dalam pembentukan awan adalah sebagai berikut :

- Udara yang bergerak ke atas akan mengalami pendinginan secara adiabatik sehingga kelembaban nisbinya (RH) akan bertambah, tetapi sebelum RH mencapai 100 %, yaitu sekitar 78 % kondensasi telah dimulai pada inti kondensasi yang lebih besar dan aktif. Perubahan RH terjadi karena adanya penambahan uap air oleh penguapan atau penurunan tekanan uap jenuh melalui pendinginan.

- Tetes air kemudian mulai tumbuh menjadi tetes awan pada saat RH mendekati 100 %. Karena uap air telah digunakan oleh inti-inti yang lebih besar dan inti yang lebih kecil kurang aktif tidak berperan maka volume tetes awan yang terbentuk jauh lebih kecil dari jumlah inti kondensasi.

- Tetes awan yang terbentuk umumnya mempunyai jari-jari 5 – 20 mm. Tetes dengan ukuran ini akan jatuh dengan kecepatan 0,01 – 5 cm/s sedang kecepatan aliran udara ke atas jauh lebih besar sehingga tetes awan tersebut tidak akan jatuh ke bumi. Bahkan jika kelembaban udara kurang dari 90 % maka tetes tersebut akan menguap. Untuk dapat jatuh ke bumi tanpa menguap maka diperlukan suatu tetes yang lebih besar yaitu sekitar 1 mm (1000 mm), karena hanya dengan ukuran demikian tetes tersebut dapat mengalahkan gerakan udara ke atas (Neiburger, et. al., 1995).

- Jadi perbedaan antara tetes awan dan tetes hujan adalah pada ukurannya.

Jika sebuah awan tumbuh secara kontinu, maka puncak awan akan melewati isoterm 0 0C. Tetapi sebagian tetes-tetes awan masih berbentuk cair dan sebagian lagi berbentuk padat atau kristal-kristal es jika terdapat inti pembekuan. Jika tidak terdapat inti pembekuan, maka tetes-tetes awan tetap berbentuk cair hingga mencapai suhu -40 0C bahkan lebih rendah lagi2.


Awan dan Presipitasi Tropis

Presipitasi merupakan jatuhan hydrometeor yang sampai ke bumi baik dalam bentuk cair (hujan) ataupun padat (es atau salju). Di wilayah tropis seperti Indonesia presipitasi lebih didefinisikan sebagai hujan karena sangat jarang terjadi presipitasi dalam bentuk jatuhan keping es.

Awan dan presipitasi merupakan bagian dari siklis hidrologi dan merupakan proses lanjutan dari kondensasi yaitu perubahan fasa dari uap air menjadi tetes-tetes air1. Kondensasi terjadi pada berbagai kondisi seperti perubahan volume udara, suhu, tekanan dan kelembaban, apabila :

- Udara didinginkan sampai titik embunnya meskipun volumenya tetap.

- Volume udara bertambah tanpa ada penambahan panas karena udara didinginkan melalui ekspansi adiabatik.

- Perubahan suhu dan volume mengurangi kapasitas kebasahan udara.

Di daerah tropis pembentukan awan terjadi pada suhu tinggi dan dengan kelembaban yang tinggi juga. Dengan demikian awan yang terbentuk mempunyai kandungan air-cair tinggi.

Presipitasi atau hujan berdasarkan mekanisme dominan dari gerak vertikal dibedakan menjadi 3 :

1. Presipitasi stratiform.

Yaitu presipitasi dari awan stratifom yang terbentuk karena gerak vertikal yang kontinu dan menyebar luas. Hal ini terjadi karena kenaikan frontal atau orografik arau konvergensi dalam skala besar.

Presipitasi dari awan stratiform tumbuh dari proses kristal es. Awan ini mempunyai kadar air lebih rendah sehingga koalisensi tidak efektif. Masa hidup awan relatif lama. Jika suhu lingkungan awan mencapai -15 0C, maka proses kristal es dapat menyebabkan presipitasi.

2. Presipitasi konvektif.

Yaitu presipitasi dari awan konvektif karena kondisi udara yang tidak stabil yang menyebabkan gerak vertikal tetapi terlokalisir dalam skala yang tidak luas.

Hujan yang terjadi umumnya tiba-tiba dan sangat lebat (heavy shower) tetapi terjadi dalam waktu yang singkat. Dalam awan konvektif waktu presipitasi lebih pendek tetapi kadar air lebih tinggi dari stratiform sehingga koalisensi sangat berperan menghasilkan hujan.

Jadi mekanisme presipitasi antara awan stratiform dan awan konvektif sangat berbeda. Sebagai pendekatan, hujan kontinu dapat dipandang sebagai keadaan mantap (steady-state process) dimana besaran awan dapat berubah dengan ketinggian tetapi konstan terhadap waktu pada ketinggian tertentu. Sebaliknya, hujan shower dapat didekati sebagai sistem dimana sifat-sifat awan berubah dengan waktu tetapi konstan terhadap ketinggian pada waktu tertentu.

Berdasarkan ketinggian terbentuknya maka awan dibagi menjadi 3 kelompok3 yaitu :

- Awan rendah, yaitu awan yang mempunyai ketinggian dasar kurang dari 2 km meliputi jenis stratus (st), stratocumulus (sc), cumulus (cu), cumulonimbus (cb) dan nimbostratus (ns). Khusus cu, cb dan ns, mempunyai dasar sebagai awan rendah namun tumbuh secara vertikal yang puncaknya mencapai awan tinggi.

- Awan menengah, yaitu awan ketinggian dasar antara 2-7 km, meliputi jenis altocumulus (ac) dan altostratus (as)

- Awan tinggi, yaitu awan dengan ketinggian dasar lebih dari 7 km, meliputi cirrus (ci), cirrocumulus (cc) dan cirrostratus (cs).


Iklim Global

Secara langsung maupun tidak langsung, angin dan awan di permukaan bumi terkait dengan matahari. Panas dari matahari memproduksi perbedaan temperatur, yang mengarahkan pada perbedaan temperatur. Dan angin selalu bergerak dari tekanan tinggi ke rendah.




http://langitselatan.com/wp-content/uploads/2007/05/climate2-150x150.jpg
Perubahan Iklim
Laut menjadi tempat penyimpanan panas matahari, dan arus laut global menggerakkan energi yang tersimpan tersebut, menyebabkan adanya iklim global, dari angin sepoi-sepoi sampai adanya badai lautan. La-nina, el-nino, merupakan salah satu fenomena musiman, yang selalu terjadi setiap tahun, seiring dengan perubahan bumi mengelilingi matahari. Demikian juga dengan interaksi harian antara udara tropis yang hangat-lembab dan udara dingin arktik yang menyebabkan adanya tornado di selatan dan barat-tengah amerika, dan kadang-kadang mengarah ke timur laut. Pergeseran kutub bumi dalam mengelilingi matahari juga merupakan penyebab terjadinya musim.
Studi mendalam juga dilakukan untuk menunjukkan adanya hubungan antara siklus matahari dengan tingkat terjadinya awan. Seperti juga yang telah dilakukan LAPAN, mengenai tingkat terjadinya awan dengan silus 11-tahunan matahari.
Studi mengenai perubahan kecerlangan matahari, memunculkan dugaan adanya kaitan dengan pemanasan global. Meskipun masih lebih dipercaya bahwa pemanasan global lebih disebabkan karena peningkatan kadar karbon dioksida di bumi, tetapi tidak tertutup kemungkinan bahwa matahari-pun memberikan sumbangan pada pemanasan global. Ketika siklus matahari menuju maksimum, matahari menjadi lebih cerlang, terdapat banyak bukti yang mendukung hubungan antara kecerlangan dan tingkat “kehangatan” global. Hubungan ini tidak hanya untuk siklus 11-tahun-an, tetap untuk periode yang lebih panjang dari aktivitas tinggi dan rendah matahari.
Studi cincin pohon dan es glasial masa lalu menjadi petunjuk temperatur global masa lalu, dan dicoba dicari kaitannya dengan siklus matahari dimasa lalu. Terutama, (kembali) pada jaman es kecil, menjadi petunjuk yang sangat berharga mengenai kaitan tersebut. Aktivitas matahari ternyata cukup tinggi sebelum abad ke-13. Meskipun masih menjadi perdebatan mengenai total keluaran matahari apakah cukup untuk mempengaruhi secara kuat iklim di bumi, tetapi tidak dapat disangkal hubungan tersebut memang ada.
Semburan angin matahari dalam bentuk radiasi, berarti juga adanya semburan proton. Ketika terjadi badai, proton membombardir atmosfer atas, memecah molekul gas seperti nitrogen dan uap air. Ketika terbebaskan, atom-atom tersebut bereaksi dengan molekul ozon dan memecah-nya menjadi unsur yang berbeda. Studi menggunakan satelit menunjukkan bahwa efek tersebut memang terjadi, meskipun kecil tetapi terukur. Dengan demikian, matahari memberikan pengaruh pada perubahan lubang ozon di atmosfer bumi.
Negara-negara lain menggunakan diagram termodinamika serupa untuk tujuan yang sama
namun rincian konstruksi mereka berbeda-beda.
PEMBENTUKAN CUACA DAN IKLIM
CUACA
cuaca adalah keadaan udara pada saat tertentu dan di wilayah tertentu yang relatif sempit
dan pada jangka waktu yang singkat.
Cuaca itu terbentuk dari gabungan unsur cuaca dan jangka waktu cuaca bisa hanya
beberapa jam saja.
Misalnya: pagi hari, siang hari atau sore hari, dan keadaannya bisa berbeda-beda untuk
setiap tempat serta setiap jamnya.
IKLIM
Iklim adalah keadaan cuaca rata-rata dalam waktu satu tahun yang penyelidikannya
dilakukan dalam waktu yang lama (± minimal 30 tahun) dan meliputi wilayah yang luas.
Iklim dapat terbentuk karena adanya:
a. Rotasi dan revolusi bumi sehingga terjadi pergeseran semu harian matahari dan
tahunan; dan
        b. Perbedaan lintang geografi dan lingkungan fisis. Perbedaan ini menyebabkan timbulnya penyerapan panas matahari oleh bumi sehingga besar pengaruhnya terhadap kehidupan di bumi.
BENCANA METEOROLOGI / KLIMATOLOGI
Bencana meteorologi merupakan bencana yang diakibatkan oleh parameter-
parameter (curah hujan,kelembaban,temperatur,angin) meteorologi.
Bencana klimatologi merupakan bencana yang disebabkan oleh
perubahan iklim.
BADAI TROPIS (tropical storm) disebut juga dengan Hurricane, Typhoon (Topan) atau
Tropical Cyclone (Siklon Topan
).
Badai tropis adalah pusaran angin kencang (disertai hujan dan badai petir) dengan

diameter putaran hingga 500 km dan kecepatan mencapai lebih dari 200 km per jam serta
mempunyai lintasan sejauh 1.000 Km, memiliki pusat putaran disebut mata siklon
berdiameter 10 km hingga 100 km yang dikelilingi oleh dinding awan padat setinggi 16
km.
SIKLON
Siklon atau badai besar dengan pusaran badai yang berekor beratus-ratus kilometer
adalah satu-satunya fenomena cuaca yang memiliki bermacam-macam sebutan dan diberi
nama untuk setiap fenomena yang terjadi.
Katrina adalah salah satu penamaannya lalu, adalagi siklon Christ yang pernah membuat
Jakarta banjir pada tahun 2002 karena efek ekornya
Selain itu berdasarkan tempat julukannya pun berbeda-beda :
- di daerah laut china selatan siklon disebut/dikenal dengan “taifun”
- di australia ia disebut “willie-wilis”
- di atlantik ia disebut “typhoon”
EL NINO
El Nino adalah fenomena alam dan bukan badai, secara ilmiah diartikan dengan
meningkatnya suhu muka laut di sekitar Pasifik Tengah dan Timur sepanjang ekuator dari
nilai rata-ratanya dan secara fisik El Nino tidak dapat dilihat.
LA NINA
Dalam bahasa latin La Nina berarti "gadis cilik".
La Nina merupakan suatu kondisi dimana terjadi penurunan suhu muka laut di kawasan
Timur equator di Lautan Pasifik, La Nina tidak dapat dilihat secara fisik, periodenya pun
tidak tetap.
KEKERINGAN
Kekeringan (drought) secara umum bisa didefinisikan sebagai pengurangan persediaan
air atau kelembaban yang bersifat sementara secara signifikan di bawah normal atau
volume yang diharapkan untuk jangka waktu khusus.
Kekeringan dapat diartikan juga sebagai suatu keadaan dimana terjadi kekurangan air,
dalam hal ini biasanya dikonotasikan dengan kekurangan air hujan.
Pengertian lain adalah kekurangan dari sejumlah air yang diperlukan, dimana keperluan
air ini ditentukan oleh kegiatan ekonomi masyarakat maupun tingkat sosial ekonominya.
Dengan demikian kekeringan adalah interaksi antara dua fenomena yaitu kondisi
sosial ekonomi dan kondisi alam. Karena kekeringan terjadi hampir di semua daerah
dunia dan memiliki karakteristik yang berbeda-beda, definisi yang berlaku harus secara
regional bersifat khusus dan memfokuskan pada dampak-dampaknya
OBSERVASI DAN INSTRUMENTASI METEOROLOGI
Imstrumentasi meteorolgi adalah berbagai alat /instrument meteorology dan geofisika
seperti alat pengukur kecepatan angin, suhu, kelembaban udara, dll



















ASTRONOMI
(SISTEM PLANET)

SISTEM TATA SURYA (Alam Semesta)

fma1600.jpgaccretion16002.jpgcompanion16001.jpgcampfires16001.jpg
Dalam Tata Surya, terdapat sembilan planet besar dengan 61 satelit dan asteroid yang tak terhitung jumlahnya, semuanya berevolusi mengelilingi satu bintang yang bernama matahari. Matahari terletak di pusat Tata Surya.
Sembilan planet ini, yang merupakan bagian dari Solar system (Tata Surya), saling berevolusi mengelilingi matahari dalam sebuah keteraturan. Mari kita ingat kembali nama-nama planet dari yang terdekat dengan matahari: Merkurius, Venus, Bumi, Mars, Yupiter, Saturnus, Uranus, Neptunus, dan Pluto. Jadi, bumi kita adalah planet ke-tiga dari matahari.
Setiap planet di Tata Surya memiliki ciri-ciri yang berbeda. Suhu pada beberapa planet cukup tinggi untuk meleburkan sesuatu. Sedangkan ada diantaranya yang permukaannya tertutup oleh es. Beberapa planet hampir seluruhnya terdiri atas gas. Bahkan beberapa planet berukuran kecil seperti bulan.
Terdapat hubungan yang sangat harmonis antara satelit dengan induknya. (Dalam astronomi, induk adalah sesuatu yang benda lain berkeliling terhadapnya. Matahari adalah induk dari bumi, bumi adalah induk dari bulan). Planet menarik satelit-satelitnya. Satelit juga mengimbangi tarikan tersebut. Tanpa kesetimbangan tersebut, satelit akan menumbuk planet atau pecah dan menghilang angkasa.
Singkatnya, jika bulan berotasi lebih lambat, ia akan tersedot bumi dengan kecepatan sangat tinggi. Ini akan menjadi akhir kehidupan bumi. Dan jika ia berotasi lebih cepat, ia akan menjauh dari bumi dan tak menjadi satelit bumi lagi.
Sekarang mari kita amati matahari, pusat Tata Surya kita.
sunflower1600.jpgsol1600.jpgscorched1600.jpg

Matahari

Matahari adalah benda langit terbesar di Tata Surya. Ia terdiri atas gas yang sangat panas dan berpijar. Setiap detik, terjadi ledakan diseluruh permukaannya, matahari sendiri merupakan bom nuklir yang sangat besar. Ledakan di permukaannya sama dengan energi yang dipancarkan oleh jutaan bom atom. Mereka menghasilkan kobaran-kobaran api yang besarnya 40 hingga 50 kali besar bumi.
Matahari bagaikan bola api yang memancarkan panas dan cahaya yang sangat kuat dari permukaannya. Jika tidak ada matahari, sepanjang hari akan gelap, dan permukaan bumi akan tertutup es. Yang pasti, tidak akan ada kehidupan di bumi ini.
Ruang angkasa (ingatlah kembali film mengenai ruang angkasa) adalah tempat yang gelap, sangat luas, dan kosong. Bumi kita adalah salah satu benda langit di dalamnya, dan tak tidak ada satupun yang cukup dekat untuk menerangi dan memanaskan bumi kita. (Subhanalloh)
Sinar matahari sangatlah terang. Mungkin kamu pernah mencoba menatap matahari di siang yang cerah. Setelah beberapa detik, matamu akan merasa silau bukan? Karena cahayanya yang sangat terang, menatap matahari secara langsung sangat berbahaya bagi mata. Demikian pula berjemur di terik matahari dalam waktu lama di musim panas juga berbahaya. Beberapa bagian kulit kita akan terbakar, dan hanya bisa disembuhkan oleh dokter. Terutama di musim panas, matahari sangatlah panas. Tetapi, jarak matahari jutaan kilometer jauhnya dari bumi kita, dan hanya seper dua ribu dari panas matahari yang sampai di bumi.
Jika suhu bumi cukup panas meskipun jarak matahari dan bumi sangat jauh, dapatkah kamu bayangkan panasnya matahari?
Para ilmuwan sudah memperkirakan besarnya. Namun, kita tidak akan mampu membayangkannya dengan mencoba membandingkannya dengan suhu benda-benda yang kita kenal di bumi. Anggap suhu permukaan matahari adalah 6,000°C (11,000°F). Di bagian tengahnya bisa mencapai 12,000,000 o C (21,600,000o F). Tak ada benda panas mana pun di bumi yang dapat dibandingkan dengannya. Tanganmu sulit menyentuh air yang panasnya 50°C (120°F). Bahkan pada cuaca yang panas, suhunya hanya sekitar 40–50°C (105-120°F). Contoh ini menunjukkan bahwa Allah mengatur dengan sangat tepat jarak antara bumi dengan matahari. Jika matahari sedikit saja lebih dekat dengan kita, segala sesuatu di bumi ini akan layu dan kering karena panasnya dan berubah menjadi abu. Sebaliknya, jika ia sedikit lebih jauh, segala sesuatu akan membeku. Tentu saja, tidak akan ada kehidupan pada keduanya.
Daerah kutub, yang sedikit menerima panas matahari, selalu tertutup oleh es. Sedangkan daerah katulistiwa, dimana sinar matahari yang diterima jauh lebih banyak, selalu panas. Allah telah menciptakan daerah tersebut sebagai contoh untuk kita. Daerah lainnya lebih sesuai untuk hidup manusia. Hal ini menunjukkan karunia Allah kepada kita. Karena, jika Allah tidak menentukan jarak antara bumi dengan dan matahari dengan tepat, kita akan lebih sulit untuk hidup di bumi. Bahkan bisa jadi tak ada lagi kehidupan.
Sebagaimana yang telah dijelaskan, Allah menciptakan Matahari dan Bulan dengan sangat sempurna agar manusia dapat hidup di planet ini. Dalam Al Qur’an, Allah memberitakan bahwa matahari dan bulan bergerak atas perintah Allah:
Allah-lah yang meninggikan langit tanpa tiang (sebagaimana) yang kamu lihat, kemudian Dia bersemayam di atas ‘Arasy, dan menundukkan matahari dan bulan. Masing-masing beredar hingga waktu yang ditentukan. Allah mengatur urusan (makhluk-Nya), menjelaskan tanda-tanda (kebesaran-Nya), supaya kamu meyakini pertemuan (mu) dengan Tuhanmu. (Surat ar-Ra’d: 2)
Gaya Tarik Gravitasi Matahari
Benda langit yang tak terhitung jumlahnya bergerak teratur secara sempurna tanpa saling bertubrukan karena Allah menempatkan mereka ke dalam orbitnya dengan tepat. Orbit adalah lintasan sebuah planet atau komet ketika berevolusi terhadap matahari. Tak satu pun planet yang berhenti mengikuti lintasan ini kecuali hilang di angkasa raya. Semua ini karena planet-planet mengalami gaya gravitasi matahari. Ketika kamu membaca tulisan ini, bumi kita bergerak dalam orbitnya dengan kecepatan 108,000 kilometer (700,000 mil ) per jam mengelilingi matahari. Penjelasan berikut mungkin dapat membantumu membayangkan kecepatannya yang dahsyat: kecepatan maksimal sebuah mobil kira-kira 200 kilometer (125 mil) per jam. Artinya kecepatan rotasi bumi mengelilingi matahari adalah 540 kali kecepatan mobil. Contoh lain adalah sebuah peluru bergerak 1,800 kilometer (1,100 mil) per jam. Kecepatan rotasi bumi mengelilingi matahari adalah 60 kali kecepatan peluru.
Karena tingginya kecepatan bumi, gaya tarik gravitasi matahari menjadi sangat penting. Jika matahari mengurangi kekuatan gravitasinya, kita akan melayang-layang di angkasa bersama bumi kita. Hal ini akan mengakhiri keberadaan bumi …
Di sisi lain, jika matahari menambah besar gaya gravitasinya, bumi kita akan tersedot oleh matahari dan melebur. Tentunya kita pun akan musnah. Selain itu, gaya tarik gravitasi matahari juga menjaga planet-planet dalam lintasan/orbit yang benar sehingga terhindar dari tabrakan antar sesamanya. Namun, pernahkah kamu bayangkan bagaimana matahari menarik planet-planet tersebut?
Jawabannya sangat jelas. Adalah Allah Sang Pencipta, Yang Agung dalam Keperkasaan-Nya, Yang menciptakan dan senantiasa memelihara keseimbangan ini.
Selain itu, tidak hanya matahari yang memiliki gaya tarik gravitasi. Planet-planet di Tata Surya juga memiliki gaya gravitasi sendiri-sendiri. Misalnya, gaya gravitasi bumi terhadap bulan. Karena gaya gravitasi ini, bulan terus berada pada jarak tertentu. Karenanya, bumi tidak bertabrakan dengan bulan. Tak diragukan, Allah dengan KekuasaanNya yang maha luas telah mencegah Bulan menimpa Bumi.
Ada gaya gravitasi lain yang mirip dengan matahari, yang khusus dirancang untuk kehidupan manusia. Ia adalah gaya gravitasi bumi yang memberi kita berat badan. Gaya gravitasi, yang kita ketahui sebagai berat badan kita, membuat kita tetap berada di muka bumi dengan kemampuan berjalan dan berlari dengan mudah tanpa melayang ke angkasa.
Bayangkan sebuah bola di tanganmu. Apa yang terjadi ketika kamu melepaskannya? Bola itu jatuh, bukan? Karena gaya gravitasi menariknya ke tanah. Namun, jika kamu tinggalkan bola itu di angkasa raya, bola itu tak akan jatuh karena gaya gravitasi disana lebih kecil. Oleh karena itu, keberadaan gaya gravitasi yang lebih besar di bumi sangat penting bagi kita.
Masih ada satu hal penting lain mengenai gravitasi: Gravitasi tidak boleh melebihi ataupun kurang dari yang seharusnya. Jika kurang, kamu akan berjalan di udara, dan tak mampu menyentuh lantai dengan kakimu. Kamu tak akan bisa bergerak seperti yang kamu mau; kamu selalu melayang dari satu tempat ke tempat lain, akan memantul ketika melangkah dan menjejakkan kaki di langit-langit. Jika gaya gravitasi lebih besar, kamu tak akan mampu berjalan karena kamu terperosok ke dalam tanah. Maka, kamu hanya akan bisa merangkak pelan sepanjang jalan.
Saat ini, yang terjadi tidaklah demikian; Allah telah menentukan kekuatan gaya gravitasi yang tepat bagi kita.
Contoh berikut mungkin akan membantu kamu memahaminya: bulan, seperti halnya bumi, juga memiliki gaya gravitasi. Namun, gaya tarik gravitasi ini lebih kecil dari pada yang dimiliki oleh bumi. Karena itu, kamu tidak mungkin dapat bertahan di bulan. Kamu mungkin pernah menyaksikan di TV bagaimana seorang astronot berjalan di bulan. Dapatkah kita terus hidup dengan cara demikian? Tentu saja tidak.
Sekarang marilah kita lanjutkan perjalanan kita dengan mengunjungi planet-planet yang berada di dalam wilayah pengaruh gravitasi matahari.
 bumi-kita2.jpgbumi-kita.jpgbumi-kita3.jpg
Planet
Telah disebutkan sebelumnya bahwa planet adalah benda langit yang berevolusi mengelilingi bintang. Dibagian ini, akan kita amati planet-planet di tata surya dimana bumi kita berada. Jika kita menganggap bahwa tata surya adalah lingkaran, matahari tepat di tengahnya.
Pluto adalah planet di lingkaran terluar. Pluto adalah planet terkecil dan terjauh dari matahari. Sangat sulit mengamati planet ini, bahkan teleskop Hubble hanya mampu menunjukkan sekilas permukaannya. Planet ini sungguh merupakan tempat yang dingin. Suhunya sekitar -238 o C (-396 o F). Di musim dingin, ketika suhu permukaan bumi sekitar -2 atau -3 o C (28 atau 26 o F), maka akan membeku. -238 o C (-396 o F) adalah 100 kali lebih dingin daripada suhu bumi terdingin untuk kita bisa hidup walau sulit. Kedinginan itu akan mengakhiri hidup kita. Dari sisi luar, Pluto nampak seperti bola yang tertutup es.
Mendekati matahari, kita akan menjumpai Neptunus. Planet ini juga sangat dingin; suhu permukaannya sekitar -218°C (-360°F). Atmosfernya mengandung gas yang beracun bagi manusia. Disamping itu, badai yang kecepatannya mencapai 2.000 kilometer (1,250 mil) per jam bertiup di permukaannya.
Bergerak kembali ke matahari, di tengah-tengah lingkaran, kita temui Uranus. Uranus adalah planet terbesar ke-tiga di Tata Surya. Suhunya -214oC (-353oF), berarti planet ini sudah cukup dingin untuk membekukan kita dalam sedetik. Atmosfirnya mengandung gas beracun yang tentunya tidak akan memberikan kehidupan.
Jika perjalanan kita teruskan ke arah matahari, akan kita jumpai Saturnus. Ia adalah planet terbesar kedua dalam tata surya, dikenal dengan cincin yang melingkarinya. Cincin ini terbuat dari gas, batu-batuan, dan es. Suhu planet ini sekali lagi tidak sesuai bagi kehidupan manusia: -178°C (-288°F).
Semakin mendekati matahari, kita berjumpa dengan Jupiter, planet terbesar dalam Tata Surya. Jupiter adalah planet yang besarnya 11 kali planet bumi. Keadaan planet ini pun tidak sesuai untuk hidup, dan merupakan tempat yang sangat dingin.
Setelah Jupiter adalah Mars. Mars adalah planet mati yang tidak pernah dibandingkan dengan bumi. Tidak ada kehidupan di Mars. Ada beberapa alasan: Pertama, atmosfir Mars merupakan campuran mematikan yang mengandung karbon dioksida pekat. Kedua, tak ada air disana. Ketiga, suhu di Mars sekitar -53oC (-63oF). Terakhir, terdapat angin yang sangat kuat serta badai pasir yang terjadi setiap saat.
Planet biru yang muncul setelah Mars adalah Bumi. Kita akan membicarakannya di bab terakhir buku ini. Sementara itu, ingatlah anak-anakku, Bumi adalah satu-satunya planet yang memungkinkan bagi adanya kehidupan.
Semakin dekat ke matahari, pencarian kita akan sampai di planet Venus. Venus merupakan bintang paling terang setelah matahari dan bulan. Karena itulah, manusia telah mengenalnya sejak lama. Meskipun planet-planet yang sama jauhnya dengan Venus juga telah dikenal oleh manusia, Venus memiliki terang yang tak tertandingi baik pada waktu pagi maupun malam. Kebalikan dari planet-planet lain, Venus sangat panas. Suhu permukaannya mencapai 450oC (840oF), cukup untuk meleburkan segala sesuatu. Ciri lain dari Venus adalah ketebalan atmosfirnya yang terdiri atas lapisan karbon dioksida. Selain itu, atmosfir Venus memiliki lapisan asam setebal beberapa kilometer. Tidak ada satupun makhluk hidup yang dapat hidup disana walau sedetik.
Kita tinggalkan Venus, kita temui Merkurius, planet yang paling dekat dengan Matahari. Rotasinya sangat lambat karena dekat dengan matahari sehingga planet tersebut hanya membuat tiga putaran penuh selama dua kali berevolusi mengelilingi matahari. Inilah mengapa salah satu sisi Merkurius sangat panas sedangkan sisi lainnya sangat dingin. Perbedaan malam dan siang pada Merkurias sebesar 1,000oC (1,800oF). Tentu saja lingkungan seperti ini tak mendukung adanya kehidupan.
Perjalanan kita sejauh ini menunjukkan bahwa selain bumi, tak ada satupun planet di Tata Surya yang memungkinkan bagi kehidupan. Semuanya tidak memiliki kehidupan dan tak berpenghuni. Namun, Bumi kita adalah planet yang menyediakan segala sesuatu yang diperlukan untuk hidup. Dengan hijaunya hutan dan birunya laut, ia nampak sangat cantik dari angkasa. Astronot pertama yang sampai di bulan kagum oleh pemandangan penuh warna dan cerah yang dimiliki bumi kita.
 winterborn1600.jpg
Benda Langit Lainnya
Benda langit lain di Tata Surya adalah komet, asteroida, dan meteorit. Semuanya adalah benda-benda langit yang tersisa dari nebula ketika pembentukan Tata Surya empat sampai enam milyar tahun yang lalu.
- Komet terbentuk dari gas dan debu-debu terpadatkan. Kadang-kadang, orbitnya membawa mereka mendekati matahari. Ketika komet mendekati matahari, permukaannya menjadi menguap karena panas. Penguapan ini menimbulkan cahaya terang. Bola besar dari gas dan debu muncul disekitar inti. Bola gas dan debu ini disebut “coma.” Terdapat juga ekor gas dan debu yang terhubung ke “coma”.
- Meteor adalah batu-batuan di angkasa. Biasanya, mereka teramati di antara orbit Mars dan Yupiter. Beberapa diantara mereka, diameternya mencapai 1,000 kilometer (620 mile).
- Meteorit adalah benda langit padat yang jatuh ke bumi dari angkasa. Kepingan batu, atau campuran batu dan besi, terpisah dari meteor atau komet. Misalnya suatu ketika bumi melintasi awan debu yang tersisa dari komet, benda dalam awan debu tersebut akan terbakar di atmosphere. Mereka terbakar ketika memasuki atmosfer bumi dan meninggalkan garis terang cahaya di langit. Inilah yang dinamakan meteor. Kadang-kadang, jika mereka tidak habis terbakar, meteor akan menumbuk bumi. Meteor-meteor yang dapat mencapai bumi dinamakan aerolit atau meteorit.
Renungkanlah satu hal penting di sini: meteor yang mencapai atmosphere kadangkala bisa sampai di bumi. Saat mereka jatuh, kerusakan yang diakibatkannya berbeda-beda, tergantung pada besarnya. Bumi kita sangat mungkin kejatuhan meteor setiap saat, akan tetapi Allah telah menciptakan mereka secara khusus sehingga mereka selalu terbakar dan musnah di atmosphere sehingga tidak membahayakan kita. Allah melindungi kita dengan menunjukkan kemurahan dan kasih sayangNya.
Sekarang kamu harus yakin bahwa Allah mengendalikan semua benda-benda langit, yang kecil maupun besar, dan memerintahkan mereka setiap saat dengan terencana dan teratur.





Hukum Gerakan Planet Kepler


http://upload.wikimedia.org/wikipedia/commons/thumb/9/98/Kepler_laws_diagram.svg/300px-Kepler_laws_diagram.svg.png
http://bits.wikimedia.org/skins-1.17/common/images/magnify-clip.png
Figure 1: Illustration of Kepler's three laws with two planetary orbits. (1) The orbits are ellipses, with focal points ƒ1 and ƒ2 for the first planet and ƒ1 and &>. (2) The two shaded sectors A1 and A2 have the same surface area and the time for planet 1 to cover segment A1 is equal to the time to cover segment A2. (3) The total orbit times for planet 1 and planet 2 have a ratio a13/2 : a23/2.
Di dalam astronomi, tiga Hukum Gerakan Planet Kepler adalah:
  • Setiap planet bergerak dengan lintasan elips, matahari berada di salah satu fokusnya.
  • Luas daerah yang disapu pada selang waktu yang sama akan selalu sama.
  • Perioda kuadrat suatu planet berbanding dengan pangkat tiga jarak rata-ratanya dari matahari.
Ketiga hukum diatas ditemukan oleh ahli matematika dan astronomi Jerman: Johannes Kepler (1571–1630), yang menjelaskan gerakan planet di dalam tata surya. Hukum di atas menjabarkan gerakan dua benda yang saling mengorbit.
Karya Kepler didasari oleh data pengamatan Tycho Brahe, yang diterbitkannya sebagai 'Rudolphine tables'. Sekitar tahun 1605, Kepler menyimpulkan bahwa data posisi planet hasil pengamatan Brahe mengikuti rumusan matematika cukup sederhana yang tercantum di atas.
Hukum Kepler mempertanyakan kebenaran astronomi dan fisika warisan zaman Aristoteles dan Ptolemaeus. Ungkapan Kepler bahwa Bumi beredar sekeliling, berbentuk elips dan bukannya epicycle, dan membuktikan bahwa kecepatan gerak planet bervariasi, mengubah astronomi dan fisika. Hampir seabad kemudian, Isaac Newton mendeduksi Hukum Kepler dari rumusan hukum karyanya, hukum gerak dan hukum gravitasi Newton, dengan menggunakan Euclidean geometri klasik.
Pada era modern, hukum Kepler digunakan untuk aproksimasi orbit satelit dan benda-benda yang mengorbit matahari, yang semuanya belum ditemukan pada saat Kepler hidup (contoh: planet luar dan asteroid). Hukum ini kemudian diaplikasikan untuk semua benda kecil yang mengorbit benda lain yang jauh lebih besar, walaupun beberapa aspek seperti gesekan atmosfer (contoh: gerakan di orbit rendah), atau relativitas (contoh: prosesi preihelion merkurius), dan keberadaan benda lainnya dapat membuat hasil hitungan tidak akurat dalam berbagai keperluan.
http://upload.wikimedia.org/wikipedia/commons/thumb/1/12/Classical_Kepler_orbit_80frames_e0.6_tilted_smaller.gif/220px-Classical_Kepler_orbit_80frames_e0.6_tilted_smaller.gif
Animasi dari gerak Kepler

Pengenalan Tiga Hukum Kepler

Secara Umum

Hukum hukum ini menjabarkan gerakan dua badan yang mengorbit satu sama lainnya. Massa dari kedua badan ini bisa hampir sama, sebagai contoh CharonPluto (~1:10), proporsi yang kecil, sebagai contoh. BulanBumi(~1:100), atau perbandingan proporsi yang besar, sebagai contoh MerkuriusMatahari (~1:10,000,000).
Dalam semua contoh di atas, kedua badan mengorbit mengelilingi satu pusat massa, barycenter, tidak satu pun berdiri secara sepenuhnya di atas fokus elips. Namun, kedua orbit itu adalah elips dengan satu titik fokus di barycenter. Jika rasio massanya besar, sebagai contoh planet mengelilingi matahari, barycenternya terletak jauh di tengah obyek yang besar, dekat di titik massanya. Di dalam contoh ini, perlu digunakan instrumen presisi canggih untuk mendeteksi pemisahan barycenter dari titik masa benda yang lebih besar. Jadi, hukum Kepler pertama secara akurat menjabarkan orbit sebuah planet mengelilingi matahari.
Karena Kepler menulis hukumnya untuk aplikasi orbit planet dan matahari, dan tidak mengenal generalitas hukumnya, artikel ini hanya akan mendiskusikan hukum di atas sehubungan dengan matahari dan planet-planetnya.

Hukum Pertama

http://upload.wikimedia.org/wikipedia/commons/thumb/5/56/Ellipse_Kepler_Loi1.svg/220px-Ellipse_Kepler_Loi1.svg.png
http://bits.wikimedia.org/skins-1.17/common/images/magnify-clip.png
Figure 2: Hukum Kepler pertama menempatkan Matahari di satu titik fokus edaran elips.
"Setiap planet bergerak dengan lintasan elips, matahari berada di salah satu fokusnya."
Pada zaman Kepler, klaim di atas adalah radikal. Kepercayaan yang berlaku (terutama yang berbasis teori epicycle) adalah bahwa orbit harus didasari lingkaran sempurna. Pengamatan ini sangat penting pada saat itu karena mendukung pandangan alam semesta menurut Kopernikus. Ini tidak berarti ia kehilangan relevansi dalam konteks yang lebih modern.
Meski secara teknis elips yang tidak sama dengan lingkaran, tetapi sebagian besar planet planet mengikuti orbit yang bereksentrisitas rendah, jadi secara kasar bisa dibilang mengaproksimasi lingkaran. Jadi, kalau ditilik dari pengamatan jalan edaran planet, tidak jelas kalau orbit sebuah planet adalah elips. Namun, dari bukti perhitungan Kepler, orbit-orbit itu adalah elips, yang juga memeperbolehkan benda-benda angkasa yang jauh dari matahari untuk memiliki orbit elips. Benda-benda angkasa ini tentunya sudah banyak dicatat oleh ahli astronomi, seperti komet dan asteroid. Sebagai contoh, Pluto, yang diamati pada akhir tahun 1930, terutama terlambat diketemukan karena bentuk orbitnya yang sangat elips dan kecil ukurannya.

Hukum Kedua

http://upload.wikimedia.org/wikipedia/commons/thumb/e/e9/Ellipse_Kepler_Loi2.svg/220px-Ellipse_Kepler_Loi2.svg.png
http://bits.wikimedia.org/skins-1.17/common/images/magnify-clip.png
Figure 3: Illustrasi hukum Kepler kedua. Bahwa Planet bergerak lebih cepat di dekat matahari dan lambat di jarak yang jauh. Sehingga, jumlah area adalah sama pada jangka waktu tertentu.
"Luas daerah yang disapu pada selang waktu yang sama akan selalu sama."
Secara matematis:
\frac{d}{dt}(\frac{1}{2}r^2 \dot\theta) = 0
dimana \frac{1}{2}r^2 \dot\thetaadalah "areal velocity".

Hukum Ketiga

Planet yang terletak jauh dari matahari memiliki perioda orbit yang lebih panjang dari planet yang dekat letaknya. Hukum Kepler ketiga menjabarkan hal tersebut secara kuantitatif.

"Perioda kuadrat suatu planet berbanding dengan pangkat tiga jarak rata-ratanya dari matahari."
Secara matematis:
 {P^2} \propto  {a^3}
dengan P adalah perioda orbit planet dan a adalah sumbu semimajor orbitnya.
Konstant proporsionalitasnya adalah semua sama untuk planet yang mengedar matahari.
\frac{P_{\rm planet}^2}{a_{\rm planet}^3} = \frac{P_{\rm earth}^2}{a_{\rm earth}^3}.

Sejarah

Pada tahun 1601 Kepler berusaha mencocokkan berbagai bentuk kurva geometri pada data-data posisi Planet Mars yang dikumpulkan oleh Tycho Brahe. Hingga tahun 1606, setelah hampir setahun menghabiskan waktunya hanya untuk mencari penyelesaian perbedaan sebesar 8 menit busur (mungkin bagi kebanyakan orang hal ini akan diabaikan), Kepler mendapatkan orbit planet Mars. Menurut Kepler, lintasan berbentuk elips adalah gerakan yang paling sesuai untuk orbit planet yang mengitari matahari. Pada tahun 1609, dia mempublikasikan Astronomia Nova yang menyatakan dua hukum gerak planet. Hukum ketiga tertulis dalam Harmonices Mundi yang dipublikasikan sepuluh tahun kemudian.

Mengenal Sistem Koordinat

Allah SWT menciptakan alam semesta ini dalam keadaan yang teratur rapi. Keteraturan gerakan bintang termasuk matahari, planet, satelit, komet dan benda langit lainnya menyebabkan gerakan benda-benda tersebut dapat dipelajari dengan seksama. Dengan memahami gerakan benda-benda langit tersebut, manusia dapat memperkirakan peristiwa-peristiwa yang terjadi di masa depan dengan akurat. Kapan matahari terbenam, kapan terjadi bulan purnama, kapan terjadi gerhana matahari dapat dihitung dengan ketelitian tinggi.
Untuk memudahkan pemahaman terhadap posisi benda-benda langit, diperkenalkan beberapa sistem koordinat. Setiap sistem koordinat memiliki koordinat masing-masing. Posisi benda langit seperti matahari dapat dinyatakan dalam sistem koordinat tertentu. Selanjutnya nilainya dapat diubah ke dalam sistem koordinat yang lain melalui suatu transformasi koordinat.
Sistem Koordinat 2 dan 3 dimensi
http://www.eramuslim.com/fckfiles/image/ilmu-hisab/image01.jpg
Untuk menyatakan posisi sebuah benda di dalam ruang, dibutuhkan suatu sistem koordinat yang memiliki pusat koordinat (origin) dan sumbu koordinat (axis). Sistem koordinat yang paling dasar/sederhana adalah Kartesian (Cartesian). Jika kita berbicara ruang 2 dimensi, maka koordinat Kartesian 2 dimensi memiliki pusat di O dan 2 sumbu koordinat yang saling tegaklurus, yaitu x dan y. Dalam Gambar 1, titik P dinyatakan dalam koordinat x dan y.
Gambar 1. Koordinat Kartesian 2 dimensi (x, y)
Selanjutnya koordinat Kartesian 2 dimensi dapat diperluas menjadi Kartesian 3 dimensi yang berpusat di O dan memiliki sumbu x, y dan z. Pada Gambar 2, titik P dapat dinyatakan dalam x, y dan z. OP adalah jarak titik P ke pusat O.
http://www.eramuslim.com/fckfiles/image/ilmu-hisab/image02.jpg
Gambar 2. Koordinat Kartesian 3 dimensi (x, y, z)
Koordinat Kartesian 3 dimensi (x, y, z) pada Gambar 2 dapat diubah menjadi Koordinat Bola (Spherical Coordinate) 3 dimensi (r, Alpha, Beta) seperti pada Gambar 3. Dalam koordinat Kartesian 3 dimensi, seluruh koordinat (x, y dan z) berdimensi panjang. Sedangkan dalam koordinat bola, terdapat satu koordinat yang berdimensi panjang (yaitu r) dan dua koordinat lainnya berdimensi sudut (yaitu Alpha dan Beta). Titik P masih tetap menyatakan titik yang sama dengan titik P pada Gambar 2. Jarak titik P ke pusat O sama dengan r. Jika titik P diproyeksikan ke bidang datar xy, maka sudut antara garis OP dengan bidang datar xy adalah Beta. Selanjutnya sudut antara proyeksi OP pada bidang xy dengan sumbu x adalah Alpha.
http://www.eramuslim.com/fckfiles/image/ilmu-hisab/image04.jpg
Gambar 3. Koordinat Bola tiga dimensi (r, Alpha, Beta)
Hubungan antara (x, y, z) dengan (r, Alpha, Beta) dinyatakan dalam transformasi koordinat berikut.
http://www.eramuslim.com/fckfiles/image/ilmu-hisab/image06.jpg
Sebagai contoh, jika titik P terletak di koordinat x = 3, y = 4 dan z = 12, maka diperoleh r = 13, Alpha = 53,13 derajat dan Beta = 67,38 derajat.
Di atas telah dibahas transformasi dari koordinat Kartesian ke koordinat bola. Berikut ini dibahas beberapa sistem koordinat yang penting dalam ilmu hisab, yaitu:
  1. Sistem Koordinat Ekliptika Heliosentrik (Heliocentric Ecliptical Coordinate).
  2. Sistem Koordinat Ekliptika Geosentrik (Geocentric Ecliptical Coordinate).
  3. Sistem Koordinat Ekuator Geosentrik (Geocentric Equatorial Coordinate).
  4. Sistem Koordinat Horison (Horizontal Coordinate).
Keempat sistem koordinat di atas termasuk ke dalam koordinat bola. Sebenarnya masih ada sistem koordinat lainnya, seperti Sistem Koordinat Ekuator Toposentrik (Topocentric Equatorial Coordinate) namun Insya Allah dibahas pada kesempatan lain.
Sekilas, banyaknya sistem koordinat di atas bisa membuat rumit. Namun pembagian sistem koordinat di atas berasal dari benda langit manakah yang dijadikan pusat koordinat, apakah bidang datar sebagai referensi serta bagaimana cara mengukur posisi benda langit lainnya. Penting pula untuk diketahui bahwa seluruh benda langit dapat dianggap seperti titik. Bisa pula dianggap seperti benda yang seluruhnya terkonsentrasi di pusat benda tersebut. Jika kita memperoleh jarak bumi-bulan, maka yang dimaksud adalah jarak antara pusat bumi dengan pusat bulan.
Sistem Koordinat Ekliptika Heliosentrik dan Sistem Koordinat Ekliptika Geosentrik sebenarnya identik. Yang membedakan keduanya hanyalah manakah yang menjadi pusat koordinat. Pada Sistem Koordinat Ekliptika Heliosentrik, yang menjadi pusat koordinat adalah matahari (helio = matahari). Sedangkan pada Sistem Koordinat Ekliptika Geosentrik, yang menjadi pusat koordinat adalah bumi (geo = bumi). Karena itu keduanya dapat digabungkan menjadi Sistem Koordinat Ekliptika. Pada Sistem Koordinat Ekliptika, yang menjadi bidang datar sebagai referensi adalah bidang orbit bumi mengitari matahari (heliosentrik) yang juga sama dengan bidang orbit matahari mengitari bumi (geosentrik).
Sistem Koordinat Ekliptika Heliosentrik (Heliocentric Ecliptical Coordinate)
Pada koordinat ini, matahari (sun) menjadi pusat koordinat. Benda langit lainnya seperti bumi (earth) dan planet bergerak mengitari matahari. Bidang datar yang identik dengan bidang xy adalah bidang ekliptika yatu bidang bumi mengitari matahari.
http://www.eramuslim.com/fckfiles/image/ilmu-hisab/image07.jpg
Gambar 4. Sistem Koordinat Ekliptika Heliosentrik
  • Pusat koordinat: Matahari (Sun).
  • Bidang datar referensi: Bidang orbit bumi mengitari matahari (bidang ekliptika) yaitu bidang xy.
  • Titik referensi: Vernal Ekuinoks (VE), didefinisikan sebagai sumbu x.
  • Koordinat:
    • r = jarak (radius) benda langit ke matahari
    • l = sudut bujur ekliptika (ecliptical longitude), dihitung dari VE berlawanan arah jarum jam
    • b = sudut lintang ekliptika (ecliptical latitude), yaitu sudut antara garis penghubung benda langit-matahari dengan bidang ekliptika.
Sistem Koordinat Ekliptika Geosentrik (Geocentric Ecliptical Coordinate)
Pada sistem koordinat ini, bumi menjadi pusat koordinat. Matahari dan planet-planet lainnya nampak bergerak mengitari bumi. Bidang datar xy adalah bidang ekliptika, sama seperti pada ekliptika heliosentrik.
http://www.eramuslim.com/fckfiles/image/ilmu-hisab/image09.jpg
Gambar 5. Sistem Koordinat Ekliptika Geosentrik
  • Pusat Koordinat: Bumi (Earth)
  • Bidang datar referensi: Bidang Ekliptika (Bidang orbit bumi mengitari matahari, yang sama dengan bidang orbit matahari mengitari bumi) yaitu bidang xy.
  • Titik referensi: Vernal Ekuinoks (VE) yang didefinisikan sebagai sumbu x.
  • Koordinat:
    • Jarak benda langit ke bumi (seringkali diabaikan atau tidak perlu dihitung)
    • Lambda = Bujur Ekliptika (Ecliptical Longitude) benda langit menurut bumi, dihitung dari VE.
    • Beta = Lintang Ekliptika (Ecliptical Latitude) benda langit menurut bumi yaitu sudut antara garis penghubung benda langit-bumi dengan bidang ekliptika
Sistem Koordinat Ekuator Geosentrik
Ketika bumi bergerak mengitari matahari di bidang Ekliptika, bumi juga sekaligus berotasi terhadap sumbunya. Penting untuk diketahui, sumbu rotasi bumi tidak sejajar dengan sumbu bidang ekliptika. Atau dengan kata lain, bidang ekuator tidak sejajar dengan bidang ekliptika, tetapi membentuk sudut kemiringan (epsilon) sebesar kira-kira 23,5 derajat. Sudut kemiringan ini sebenarnya tidak bernilai konstan sepanjang waktu. Nilainya semakin lama semakin mengecil. Masalah ini Insya Allah akan dibahas pada kesempatan lain.
http://www.eramuslim.com/fckfiles/image/ilmu-hisab/image11.jpg
Gambar 6. Sistem Koordinat Ekuator Geosentrik
  • Pusat koordinat: Bumi
  • Bidang datar referensi: Bidang ekuator, yaitu bidang datar yang mengiris bumi menjadi dua bagian melewati garis khatulistiwa
  • Koordinat:
    • jarak benda langit ke bumi.
    • Alpha = Right Ascension = Sudut antara VE dengan proyeksi benda langit pada bidang ekuator, dengan arah berlawanan jarum jam. Biasanya Alpha bukan dinyatakan dalam satuan derajat, tetapi jam (hour disingkat h). Satu putaran penuh = 360 derajat = 24 jam = 24 h. Karena itu jika Alpha dinyatakan dalam derajat, maka bagilah dengan 12 untuk memperoleh satuan derajat. Titik VE menunjukkan 0 h.
    • Delta = Declination (Deklinasi) = Sudut antara garis hubung benda langit-bumi dengan bidang ekliptika.Nilainya mulai dari -90 derajat (selatan) hingga 90 derajat (utara). Pada bidang ekuator, deklinasi = 0 derajat.
Seringkali, Alpha (right ascension) dinyatakan dalam bentuk H (hour angle). Hubungan antara Alpha dengan H adalah H = LST - Alpha.
Disini, LST adalah Local Sidereal Time, yang sudah penulis bahas sebelumnya pada tulisan tentang Macam-Macam Waktu (http://www.eramuslim.com/syariah/ilmu-hisab/macam-macam-waktu.htm)
Sistem Koordinat Horison
Pada sistem koordinat ini, pusat koordinat adalah posisi pengamat (bujur dan lintang) yang terletak di permukaan bumi. Kadang-kadang, ketinggian pengamat dari permukaan bumi juga ikut diperhitungkan. Bidang datar yang menjadi referensi seperti bidang xy adalah bidang horison (bidang datar di sekitar pengamat di permukaan bumi).
http://www.eramuslim.com/fckfiles/image/ilmu-hisab/image14.jpg
Gambar 7. Sistem Koordinat Horison
  • Pusat koordinat: Pengamat di permukaan bumi
  • Bidang datar referensi: Bidang horison (Horizon plane)
  • Koordinat:
    • Altitude/Elevation = sudut ketinggian benda langit dari bidang horison. h = 0 derajat berarti benda di bidang horison. h = 90 derajat dan -90 derajat masing-masing menunjukkan posisi di titik zenith (tepat di atas kepala) dan nadir (tepat di bawah kaki).
    • A (Azimuth) = Sudut antara arah Utara dengan proyeksi benda langit ke bidang horison.
Jarak benda langit ke pengamat dalam sistem koordinat ini seringkali diabaikan, karena telah dapat dihitung sebelumnya dalam sistem koordinat ekliptika.
Catatan penting: Dalam banyak buku referensi, azimuth seringkali diukur dari arah selatan (South) yang memutar ke arah barat (West). Gambar 7 di atas juga menunjukkan bahwa azimuth diukur dari arah Selatan. Namun demikian, dalam pemahaman umum, orang biasanya menjadikan arah Utara sebagai titik referensi. Karena itu dalam tulisan ini penulis menjadikan sudut azimuth diukur dari arah Utara. Untuk membedakannya, lambang untuk azimuth dari arah selatan dinyatakan sebagai As, sedangkan azimuth dari arah utara dinyatakan sebagai A saja. Hubungan antara As dan A adalah A = As - 180 derajat. Jika As atau A negatif, tinggal tambahkan 360 derajat.
Suatu sistem koordinat dengan sistem koordinat lainnya dapat dihubungkan melalui transformasi koordinat. Misalnya, dari algoritma untuk menghitung posisi bulan menurut sistem koordinat ekliptika geosentrik, kita dapat menentukan jarak bulan dari pusat bumi, sudut lambda dan beta. Selanjutnya, sudut lambda dan beta ditransformasi untuk mendapat sudut alpha dan delta dalam sistem koordinat ekuator geosentrik. Dari alpha dan beta, serta memperhitungkan posisi pengamat (bujur dan lintang) dan waktu saat pengamatan/penghitungan, maka sudut ketinggian (altitude) dan azimuth bulan menurut sistem koordinat horison dapat diketahui dengan tepat. Rumus-rumus transformasi koordinat yang membutuhkan pengetahuan trigonometri
TEROPONG BINTANG

http://htmlimg1.scribdassets.com/iw8vu2uhk7ydke8/images/2-e1387d31ec/000.jpg
Teropong Bintang
Teropong bintang atau teropong astronomi digunakan untuk mengamati benda-benda angkasa luar. Teropong bintang menggunakan dua buah lensa positif, masing-masing sebagai lensa obyektif dan lensa okuler. Berbeda dengan mikroskop, pada teropong jarak focus lensa obyektif lebih besar dari jarak focus lensa okuler.
Teropong Bumi
Teropong bumi yang disebut juga teropong medan atau teropong yojana menghasilkan bayangan akhir yang tegak terhadap arah benda semula. Hal ini dapat diperoleh dengan menggunakan lensa cembung ketiga yang disisipkan di antara lensa obyektif dan lensa okuler. Lensa cembung ketiga hanya berfungsi membalik bayangan tanpa perbesaran, oleh karena itu lensa ini disebut lensa pembalik.
http://htmlimg2.scribdassets.com/iw8vu2uhk7ydke8/images/3-3a4a09c672/000.jpghttp://htmlimg2.scribdassets.com/iw8vu2uhk7ydke8/images/3-3a4a09c672/000.jpg
Teropong panggung atau Teropong Galilei
Teropong panggung atau teropong Galilei disebut juga teropong Belnada atau teropong tonil. Teropong ini menghasilkan bayangan akhir yang tegak dan diperbesar dengan menggunakan dua buah lensa, lensa positif sebagai lensa obyektif dan lensa negatif sebagai lensa okuler.
Teropong Prisma
Penggunaan lensa pembalik untuk menghasilkan
bayangan akhir yang tegak mengakibatkan teropong bumi menjadi relative
panjang. Untuk menghindarinya maka lensa pembalik diganti dengan
penggunaan dua prisma siku-siku sama kaki yang disisipkan di antara lensa
obyektif dan lensa okuler. Prisma-prisma tersebut digunakan untuk
membalikkan bayangan dengan pemantulan sempurna.
Sejarah Teleskop atau Teropong
Perkembangan ilmu pengetahuan dan teknologi pengamatan pada lima abad
lalu membawa manusia untuk memahami benda-benda langit terbebas dari
selubung mitologi. Galileo Galilei (1564-1642) dengan teleskop refraktornya
mampu menjadikan mata manusia "lebih tajam" dalam mengamati benda langit
yang tidak bisa diamati melalui mata biasa.
Karena teleskop Galileo bisa mengamati lebih tajam, ia bisa melihat berbagai
perubahan bentuk penampakan Venus, seperti Venus Sabit atau Venus
Purnama sebagai akibat perubahan posisi Venus terhadap Matahari. Teleskop
Galileo terus disempurnakan oleh ilmuwan lain seperti Christian Huygens
(1629-1695) yang menemukan Titan, satelit Saturnus, yang berada hampir 2
kali jarak orbit Bumi-Yupiter.
Perkembangan teleskop juga diimbangi pula dengan perkembangan
perhitungan gerak benda-benda langit dan hubungan satu dengan yang lain
melalui Johannes Kepler (1571-1630) dengan Hukum Kepler. Dan puncaknya,
Sir Isaac Newton (1642-1727) dengan hukum gravitasi. Dengan dua teori
perhitungan inilah yang memungkinkan pencarian dan perhitungan benda-
benda langit selanjutnya .





PETA BINTANG
bintang2.jpg

bintang3.jpg





 HIDROSFER

Jenis/Macam Siklus Hidrologi / Siklus Air Pendek, Sedang & Panjang Di Bumi

Air adalah sesuatu yang sangat dibutuhkan oleh makhluk hidup di bumi. Secara umum banyaknya air yang ada di planet ini adalah sama walaupun manusia, binatang dan tumbuhan banyak menggunakan air untuk kebutuhan hidupnya. Jumlah air bersih sepertinya tidak terbatas, namun sebenarnya air mengalami siklus hidrologi di mana air yang kotor dan bercampur dengan banyak zat dibersihkan kembali melalui proses alam.
Proses siklus hidrologi berlangsung terus-menerus yang membuat air menjadi sumber daya alam yang terbaharui. Jumlah air di bumi sangat banyak baik dalam bentuk cairan, gas / uap, maupun padat / es. Jumlah air seakan terlihat semakin banyak karena es di kutub utara dan kutub selatan mengalami pencairan terus-meners akibat pemanasan global bumi sehingga mengancam kelangsungan hidup manusia di bumi.
Macam-Macam dan Tahapan Proses Siklus Hidrologi :
A. Siklus Pendek / Siklus Kecil
1. Air laut menguap menjadi uap gas karena panas matahari
2. Terjadi kondensasi dan pembentukan awan
3. Turun hujan di permukaan laut
B. Siklus Sedang
1. Air laut menguap menjadi uap gas karena panas matahari
2. Terjadi kondensasi
3. Uap bergerak oleh tiupan angin ke darat
4. Pembentukan awan
5. Turun hujan di permukaan daratan
6. Air mengalir di sungai menuju laut kembali
C. Siklus Panjang / Siklus Besar
1. Air laut menguap menjadi uap gas karena panas matahari
2. Uap air mengalami sublimasi
3. Pembentukan awan yang mengandung kristal es
4. Awan bergerak oleh tiupan angin ke darat
5. Pembentukan awan
6. Turun salju
7. Pembentukan gletser
8. Gletser mencair membentuk aliran sungai
9. Air mengalir di sungai menuju darat dan kemudian ke laut
GEOHIDROLOGI
Hidrogeologi dalam bahasa Inggris tertulis hydrogeology. Bila kita merujuk dari struktur bahasa
Inggris, maka tulisanhydrogeol ogy dapat diurai menjadi (Toth, 1990) : Hydroà merupakan kata sifat (adjective) yang berarti ‘mengenai air’ Geologyà kata benda
Sehingga dapat diartikan menjadi geologi air (the geology of water). Secara definitif dapat dikatakan merupakan suatu studi dari interaksi antara kerja kerangka batuan dan air tanah. Dalam prosesnya, studi ini menyangkut aspek-aspek fisika dan kimia yang terjadi di dekat atau di bawah permukaan tanah. Termasuk di dalamnya adalah transportasi massa, material, reaksi kimia, perubahan temperatur, perubahan topographi dan lainnya. Proses ini terjadi dalam skala waktu harian (daily time scale). Sedangkan gerakan air di dalam tanah melalui sela-sela dari kerangka batuan dikenal juga dengan istilah aliran air tanah (groundwater
flow). Definisi air tanah ialah sejumlah air dibawah permukaan bumi yang dapat dikumpulkan dengan
sumur-sumur, terowongan atau sistem drainase. Dapat juga disebut aliran yang secara alami mengalir ke
permukaan tanah melalui pancaran atau rembesan (Bouwer, 1978).
Air tanah mengalir dari daerah yang lebih tinggi menuju ke daerah yang lebih rendah dan dengan akhir perjalanannya menuju ke laut. Daerah yang lebih tinggi merupakan daerah tangkapan (recharge area) dan daerah yang lebih rendah merupakan daerah buangan (discharge area), yang merupakan daerah pantai maupun lembah dengan suatu sistem aliran sungai. Secara lebih spesifik daerah tangkapan didefinisikan sebagai bagian dari suatu daerah aliran (watershed/catchment area) dimana aliran air tanah (yang
saturated) menjauhi muka air tanah.
Sedangkan daerah buangan didefinisikan sebagai bagian dari suatu daerah aliran (watershed/catchment area) dimana aliran air tanah (yangsaturated) menuju muka air tanah (Freeze dan Cherry, 1979). Biasanya di daerah tangkapan, muka air tanahnya terletak pada suatu kedalaman tertentu sedangkan muka air tanah daerah buangan umumnya mendekati permukaan tanah, salah satu contohnya adalah pantai.
Sistem Akuifer dan Geologi Air Tanah
Beberapa istilah penting yang merupakan bagian dari hidrogeologi dijelaskan definisinya, yaitu :
a.
Akuifer
Definisi akuifer ialah suatu lapisan, formasi, atau kelompok formasi satuan geologi yangpermeabl e baik yang terkonsolidasi (misalnya lempung) maupun yang tidak terkonsolidasi (pasir) dengan kondisi jenuh air dan mempunyai suatu besaran konduktivitas hidraulik (K) sehingga dapat membawa air (atau air dapat diambil) dalam jumlah (kuantitas) yang ekonomis.
b.
Aquiclude (impermeable layer)
Definisinya ialah suatu lapisan lapisan, formasi, atau kelompok formasi suatu geologi yang
impermable dengan nilai konduktivitas hidraulik yang sangat kecil sehingga tidak memungkinkan air
melewatinya. Dapat dikatakan juga merupakan lapisan pambatas atas dan bawah suatuconfined
aquifer.
c.
Aquitard (semi impervious layer)
Definisinya ialah suatu lapisan lapisan, formasi, atau kelompok formasi suatu geologi yangpermabl e dengan nilai konduktivitas hidraulik yang kecil namun masih memungkinkan air melewati lapisan ini walaupun dengan gerakan yang lambat. Dapat dikatakan juga merupakan lapisan pambatas atas dan bawah suatu semi confined aquifer.
d.
Confined Aquifer
Merupakan akuifer yang jenuh air yang dibatasi oleh lapisan atas dan bawahnya merupakanaquiclude dan tekanan airnya lebih besar dari tekanan atmosfir. Pada lapisan pembatasnya tidak ada air yang mengalir (no flux).
e.
Semi Confined (leaky) Aquifer
Merupakan akuifer yang jenuh air yang dibatasi oleh lapisan atas berupaaquitard dan lapisan bawahnya merupakanaquiclude. Pada lapisan pembatas di bagian atasnya karena bersifat aquitard masih ada air yang mengalir ke akuifer tersebut (influx) walaupun hidraulik konduktivitasnya jauh lebih kecil dibandingkan hidraulik konduktivitas akuifer. Tekanan airnya pada akuifer lebih besar dari tekanan atmosfir.
f.
Unconfined Aquifer
Merupakan akuifer jenuh air (satured). Lapisan pembatasnya, yang merupakanaquit ard, hanya pada bagian bawahnya dan tidak ada pembatasaquit ard dilapisan atasnya, batas di lapisan atas berupa muka air tanah. Dengan kata lain merupakan akuifer yang mempunyai muka air tanah.
g.
Semi Unconfined Aquifer
Merupakan akuifer yang jenuh air (satured) yang dibatasi hanya lapisan bawahnya yang merupakan
aquitard. Pada bagian atasnya ada pembatas yang mempunyai hidraulik konduktivitas lebih kecil
daripada hidraulik konduktivitas dari akuifer. Akuifer ini juga mempunyai muka air tanah yang terletak
pada lapisan pembatas tersebut.
h.
Artesian Aquifer
Merupakan confined aquifer dimana ketinggian hidrauliknya (potentiometric surface) lebih tinggi daripada muka tanah. Oleh karena itu apabila pada akuifer ini dilakukan pengeboran maka akan timbul pancaran air (spring), karena air yang keluar dari pengeboran ini berusaha mencapai ketinggian hidraulik tersebut.
Lithologi, Stratigrafi dan Struktur
Kondisi alami dan distribusi akuifer,aquiclude danaquit ard dalam sistem geologi dikendalikan oleh lithologi, stratigrafi dan struktur dari material simpanan geologi dan formasi (Freeze dan Cherry, 1979). Selanjutnya dijelaskan lithologi merupakan susunan fisik dari simpanan geologi. Susunan ini termasuk komposisi mineral, ukuran butir dan kumpulan butiran (grain pcking) yang terbentuk dari sedimentasi atau batuan yang menampilkan sistem geologi. Stratigrafi menjelaskan hubungan geometris dan umur antara macam-macam lensa, dasar dan formasi dalam geologi sistem dari asal terjadinya sedimentasi. Bentuk struktur seperti pecahan (cleavages), retakan (fracture), lipatan (folds), dan patahan (faults), merupakan sifat-sifat geometrik dari sistem geologi yang dihasilkan oleh perubahan bentuk (deformation) akibat adanya proses penyimpanan (deposition) dan proses kristalisasi (crystallization) dari batuan. Pada simpanan yang belum terkonsolidasi (unconsolidated deposits) lithologi dan stratigrafi merupakan pengendali yang paling penting.
Beberapa Macam Unconfined Aquifer
Unconfined aquifer merupakan akuifer dengan hanya satu lapisan pembatas yang kedap air
(dibagian bawahnya). Ketinggian hidraulik sama dengan ketinggian muka airnya. Dari sistem terbentuknya
dan lokasinya jenis akuifer ini ada beberapa macam, yaitu :
a.
Akuifer Lembah (Valley Aquifers)
Merupakan akuifer yang ada pada suatu lembah dengan sungai sebagai batas (inlet atauoutletnya).
Jenis ini dapat dibedakan berdasarkan lokasinya yaitu di daerah yang banyak curah hujannya (humid
zone), seperti di Indonesia. Pengisian air terjadi pada seluruh areal dari akuifer melalui transfiltrasi.
Sungai-sungai yang ada di akuifer ini diisi airnya (recharge) melalui daerah-daerah yang mempunyai ketinggian yang sama dengan ketinggian sungai. Pada ilmu hidrologi pengisian yang menimbulkan aliran ini dikenal dengan sebutan aliran dasar (base flow). Hal ini merupakan indikator bahwa walaupun dalam keadaan tidak ada hujan (musim kemarau), pada sungai-sungai tertentu masih ada aliran airnya. Disamping itu akibat adanyarecharge juga merupakan salah satu faktor penyebab suatu sungai berkembang dari penampang yang kecil disebelah hulunya menjadi penampang yang besar di sebelah hilirnya (mendekati laut).
Pada daerah gersang (arid zone) dimana curah hujannya sedikit, kurang dari 500 mm per tahun, dan lebih kecil dari penguapan/evapotranspirasi phenomenanya merupakan kebalikan dari daerahhumid. Karena pengisian (infiltrasi) ke akuifer tidak ada akibat sedikitnya curah hujan, maka pengisian adalah dari sungai ke akuifer. Pada umumnya aliran pada akuifer adalah pada arah yang sama dengan aliran sungai. Masalah yang terjadi umumnya :
http://htmlimg2.scribdassets.com/j30ex6owelz9874/images/3-df2b84d634/001.jpg
http://htmlimg1.scribdassets.com/j30ex6owelz9874/images/3-df2b84d634/000.png
-
Permeabilitas besar dari sungai terutama pada bagian dasarnya, semakin besar permeabilitasnya
aliran sungai semakin kecil karena aliran akan meresap ke dalam tanah.
-
Pada daerah rendah timbul masalah salinitas yang cukup besar, karena aliran air tanah (Chebatarev, 1955 dan Toth, 1963) mengubah komposisi kimia makin ke hilir mendekati unsur kimia air laut (misalnya NaCl).
b.
Perched Aquifers
Merupakan akuifer yang terletak di atas suatu lapisan formasi geologi kedap air. Biasanya terletak bebas di suatu struktur tanah dan tidak berhubungan dengan sungai. Kadang-kadang bilamana lapisan di bawahnya tidak murni kedap air namun berupaaquitards bisa memberikan distribusi air pada akuifer di bawahnya. Kapasitasnya tergantung dari pengisian air dari sekitarnya dan juga luasnya lapisan geologi yang kedap air tersebut.
c.
Alluvial Aquifers
Alluvial Aquifers merupakan material yang terjadi akibat proses fisik di sepanjang daerah aliran sungai
atau daerah genangan (flood plains). Akibat pergeseran sungai dan perubahan kecepatan penyimpanan yang sebelumnya pernah terjadi maka simpanan berisi material tanah yang beragam dan heterogen dalam distribusi sifat-sifat hidaruliknya. Dalam klasifikasi tanah sering disebutw elll graded. Akibatnya kapasitas air di akuifer ini menjadi besar dan umumnya volume air tanahnya seimbang (equillibrium) dengan air yang ada di sungai. Akuifer ini membantu pengaturan rezim aliran sungai. Sehingga boleh dikatakan setiap daerah dengan akuifer jenis ini, akuifer ini merupakan sumber yang penting untuk suplai air. Di daerah hulu aliran sungai umumnya air sungai meresap ke tanah (infiltrasi) dan mengisi akuifer ini (recharge). Hal ini terjadi karena ketinggian dasar sungai relatif di atas ketinggian muka air tanah pada akuifer. Namun semakin ke hilir aliran sungai terjadi sebaliknya, akuifer memberikan pengisian ke aliran sungai (recharge), karena muka air tanah di akuifer relatif lebih tinggi di bandingkan dengan dasar sungai. Pengisian ini menimbulkan aliran dasar (base flow) di sungai sepanjang tahun, walaupun pada musim kemarau tidak terjadi hujan di daerah pengaliran sungai (DPS). Ditinjau dari kuantitas kandungan air yang dimilikinya, maka akuifer ini merupakan akuifer yang paling baik dibandingkan dengan akuifer jenis lain.

MORFOLOGI DASAR LAUT INDONESIA

Indonesia adalah negara kepulauan yang dipersatukan oleh wilayah lautan dengan luas seluruh wilayah teritorial adalah 8 juta km2, mempunyai panjang garis pantai mencapai 81.000 km, hampir 40 juta orang penduduk tinggal di kawasan pesisir. Luas wilayah perairan mencapai 5,8 juta km2 atau sama dengan 2/3 dari luas wilayah Indonesia, terdiri dari Zona Ekonomi Ekslusif (ZEE) 2,7 juta km2 dan wilayah laut territorial 3,1 juta km2. Luas wilayah perairan Indonesia tersebut telah diakui sebagai Wawasan Nusantara oleh United Nation Convention of The Sea (UNCLOS, 1982).
http://www.mgi.esdm.go.id/files/u1/mulyana.jpg
Gambaran Umum
Indonesia adalah negara kepulauan yang dipersatukan oleh wilayah lautan dengan luas seluruh wilayah teritorial adalah 8 juta km2, mempunyai panjang garis pantai mencapai 81.000 km, hampir 40 juta orang penduduk tinggal di kawasan pesisir. Luas wilayah perairan mencapai 5,8 juta km2 atau sama dengan 2/3 dari luas wilayah Indonesia, terdiri dari Zona Ekonomi Ekslusif (ZEE) 2,7 juta km2 dan wilayah laut territorial 3,1 juta km2. Luas wilayah perairan Indonesia tersebut telah diakui sebagai Wawasan Nusantara oleh United Nation Convention of The Sea (UNCLOS, 1982).
Wilayah pantai dan laut Indonesia yang selain luas merupakan peluang dan sekaligus tantangan karena dengan semakin terbatasnya sumberdaya mineral dan energi di darat dan faktor resiko kerusakan lingkungan di darat jauh lebih besar maka perhatian kegiatan riset geologi dan geofisika ditujukan ke laut sebagai harapan dimasa datang yang dapat mengungkapkan berbagai kekayaan sumberdaya mineral dan energi.
Fisiografi Dasar Laut
Secara fisiografi wilayah laut Indonesia dapat dibagi menjadi tiga wilayah , yaitu: [1]daerah Paparan Sunda terletak di bagian barat Indonesia; [2] Paparan Sahul di bagian timur Indonesia dan; [3] zona transisi. Paparan Sunda meliputi daerah-daerah perairan Selat Malaka, Laut Cina Selatan dan Laut Jawa dengan kedalaman rata-rata mencapai 120 meter membentuk paparan sedimen yang tebal dengan penyebaran yang cukup luas. Paparan Sahul meliputi daerah-daerah di selatan Laut Banda dan Laut Aru. Daerah ini sangat dipengaruhi oleh sistem benua Australia, sehingga sedimen di daerah ini ditafsirkan sebagai sedimen asal kontinen Australia. Sedangkan daerah transisi meliputi daerah-daerah perairan Laut Sulawesi, Laut Maluku, Laut Banda dan Laut Flores.
Perbedaan yang menyolok antara Indonesia bagian barat dan Indonesia bagian timur adalah batas antara kaduanya barimpit dangan apa yang semula disebut sebagai garis wallace (wallace line). Garis ini, yang membujur dengan arah utara-selatan melalui Selat Makasar dan Selat Lombok (antara P. Bali dan P. Lombok), semula adalah suatu garis yang mumbatasi fauna dan flora yang berbeda antara bagian timur dan barat, tetapi garis ini ternyata juga mamperlihatkan bentuk fisiografi yang barbeda.
Dari kenampakkan fisiografi wilayah laut Indonesia maka dapat ditafsirkan secara geologi bahwa perkembangan tektonik antara Indonesia bagian barat dan bagian timur mempunyai perbedaan. Indonesia bagian barat  terdiri dari beberapa pulau-pulau besar di mana antara pulau satu dengan lainnya dipisahkan oleh laut dangkal  serta mempunyai tatanan tektonik yang lebih saderhana apabila dibandingkan dengan Indonesia bagian timur yang terdiri dari sederetan pulau pulau berbentuk busur lengkung dengan  perbedaan bentuk relief yang sangat menonjol dan dipisahkan oleh laut dalam,  yang mempunyai palung-palung dalam dan pegunungan yang tinggi sehingga mempunyai tatanan tektonik lebih rumit.
Morfologi Dasar Laut
Panorama permukaan dasar laut atau morfologi merupakan gambaran dasar laut sebagaimana yang ada di daratan, seperti kenampakkan dari : pegunungan, gunung api, lereng, dataran, lembah, parit dan channel. Bentuk morfologi tersebut, umumnya berkaitan dengan proses-proses geologi dari pembentukan dan perkembangannya baik secara sendiri-sendiri maupun secara kelompok.
Berdasarkan peta batimetri Indonesia, pola batimetri yang berkembang memperlihatkan morfologi dasar lautnya mengikuti garis pantai dan pola hasil tektonik (Gambar 1: Peta Batimetri Indonesia). Di sekitar Paparan sunda (Selat Malaka, Laut Cina Selatan dan Laut Jawa) berkembang morfologi paparan yang mengikuti garis pantai. Sedangkan di Kawasan Timur Indonesia (KTI) memperlihatkan kedalaman yang besar, mulai 2000 meter (Timor Trough) hingga lebih 7000 meter (Cekungan Weber). Pada umumnya cekungan di KTI yang terbentuk sangat bervariasi dan terisi oleh sedimen laut dalam yang sangat tipis. Daerah tinggian memperlihatkan bentuk tojolan-tojolan dan lembah sempit yang tajam sebagai penciri utama batuan dasar (Basement Rock). Bentuk-bentuk tersebut tidak terlepas dari pengaruh tumbukan intra mikrokontinen Australia dengan busur Kepuluan Banda. Proses tersebut masih berlangsung hingga saat ini sehingga sedimen-sedimen yang ada selain terdorong ikut penyusupan juga terakresi bahkan membentuk gunung api bawah laut (Sub-marine volcano).
Posisi kawasan Indonesia yang terletak pada jalur tektonik tersebut telah memberi pengaruh yang besar terhadap bentukan roman dan morfologi dasar laut Indonesia. Pengaruh langsung tersebut adalah terbentuknya wilayah paparan, tepi margin dan busur kepulauan.
Kondisi morfologi dasar laut Indonesia mempunyai perbedaan mencolok antara kawasan barat  dan kawasan timur. Laut Jawa yang merupakan sistem Paparan Sunda (Sunda Shelf) mempunyai kedalaman dasar laut rata-rata 130 meter, sedangkan Laut Flores dan Laut Banda yang merupakan laut tepi mempunyai kedalaman lebih 5000 meter. Karakteristik laut dan samudra secara umum didasarkan pada kedalaman dasar laut yang dengan mudah dapat diamati dari nilai garis kontur peta batimetri. Untuk sistem samudra terdapat hubungan empiris yang memperlihatkan hubungan antara kedalaman dan umur pembentukannya. Makin tua umur samudra serta proses-proses geologi yang berjalan, akan makin dalam dasar laut tersebut.

Geologi Kelautan

Seperti kita ketahui bahwa Indonesia adalah negara kepulauan, yang sebagian besar wilayahnya adalah berupa lautan. Sejumlah 17.508 pulau, baik pulau besar dan kecil terdapat di Indonesia, dengan panjang garis pantai 81.000 km, yang merupakan terpanjang ke 2 di dunia, dan luas wilayah 21 juta km2, Indonesia merupakan negara yang luas dan kaya. Luas dalam arti sangat besar wilayahnya dan keanekaragaman wilayahnya mulai dari daratan, kepulauan, sampai lautannya. Serta kaya dalam artian sangat berpotensi mempunyai kekayaan alam di wilayah yang sangat luas yang dimilikinya, baik di daratan maupun di lautan, karena seperti kita ketahui sebagai seorang ahli geologi, yang telah memahami proses-proses geologi, seperti tektonik lempeng dan lain sebagainya, bahwa Indonesia berada di zona yang sangat berpotensi terdapatnya sumberdaya alam yang berlimpah.
Geologi kelautan sendiri secara prinsip hampir sama dengan geologi dipermukaan atau didaratan, baik itu proses-proses geologinya dan lain sebagainya, hanya saja permukaannya tertutupi suatu massa air. Dalam Geologi kelautan seperti juga kita mempelajari geologi di daratan, akan menampakkan juga suatu kenampakkan geomorfologi, hanya saja sekali lagi kenampakkan itu tertutup oleh massa air. Dalam mempelajari Geologi kelautan, ada beberapa  istilah kenampakkan geomorfologi seperti halnya kenampakkan geomorfologi didarat, beberapa diantaranya yaitu :
Coastal Plain             : Suatu perbatasan antara daratan dan lautan yang masih dipengaruhi oleh proses-proses di daratan dan lautan
Continental shelf      : Terbentuk ke arah lautan, kemiringan bertambah ke arah lautan, kedalaman rata-rata 3000 -6000 m, lebar 200 – 300 km
Continental Slope    : Pada tepian paparan kedalaman bertambah secara tiba-tiba, 100, 200 m , 1500 m, 3500 m, kemiringan terjal, terdapat gawir sesar
Continental Rise       : Terletak antara slope (lereng) dan Ocean basin, kemiringan tidak terjal, relief rendah, terbentuk akibat akumulasi sedimen, berasosiasi dengan lantai samudra dalam
Abysal plain             : Diketemukan oleh ekspedisi MAR (1947), berbentuk dataran bawah laut
Oceanic ridge           : Terdiri dari pematang, dan rekahan, menyebar hampir di seluruh samudra, total panjang 80.000km, kedalaman rata-rata 2500m, terbentuk di bagian tengah lautan, topografi kasar, lembah sejajar dengan sumbu kadang-kadang terpotong oleh zona rekahan, tinggi 1000-3000km, lebar 1000m, sedimentasi berkembang  jauh di bawah puncak
Ocean basin floor     : Terdiri dari abyssal floor (lantai tubir), oceanic rise (tonjolan dasar laut dan sea mount (gunung api dasar laut)
Rekahan                     : Berbentuk linier, berbentuk gawir, seamount, melebar dan memotong ridge
Abyssal hill               : Berbentuk relatif sempit dan tajam, tingginya tidak lebih 1000m. Dimensi bervariasi antara 1-15km, kemiringan 1-15 derajat, terbentuk secara mengelompok , bentuk tergantung batuan dasar
Sea mount                 : Tingginya mencapai lebih kurang 1000m, tersebar pada dasar laut dalam secara terpencar, kemiringan berkisar antara 5 sampai 15 derajat dan berbentuk kerucut
Marginal trench        : Berbentuk sempit dan sejajar dengan tepian benua, pada umumnya tersebar di samudra pasifik, kerak dibawahnya bersifat continental, kedalaman rumpang paparan rata-rata 130 m, lebar 400 km(rata-rata 78km), kadang-kadang berbentuk teras, dipengaruhi oleh proses erosi dan sedimentasi.
Istilah-istilah diatas menjelaskan kepada kita tentang kenampakan morfologi dasar laut yang tidak selalu akan kita lihat seperti halnya kita melihat kenampakkan morfologi didarat, tentu saja karena morfologi dasar laut ditutupi oleh massa air diatasnya.
Selain daripada aspek geomorfologi, dalam kerangka geologi kelautan seperti halnya proses geologi yang terjadi di darat, juga terdapat pengaruh sedimentasi, baik itu sedimen di daerah dekat pantai (Nearshore) ataupun di perairan laut dalam (Deepsea).  Sedimentasi di laut sangat penting artinya dalam kerangka geologi kelautan, diantaranya adalah karena morfologi permukaan dasar laut juga ikut dikontrol oleh pengaruh supply sedimen, juga batas-batas antar bagian-bagian morfologi dasar laut juga ikut dikontrol oleh sedimentasi.  Disamping itu proses sedimentasi di laut juga akan mempengaruhi proses-proses di bagian lainnya, sebagai contoh sedimen di daerah dekat pantai dan paparan merupakan kunci bagi sedimen di laut dalam dan dipengaruhi oleh:
•         perubahan muka air laut
•         proses penurunan dasar laut
•         proses dinamika (oseanografi)
Pada sedimentasi dilaut tentunya juga terdapat material yang tersedimentasi, beberapa sumber-sumber material yang mempengaruhi sedimentasi di laut diantaranya adalah :
Material yang berasal dari sungai, meliputi sekitar  85% – 90%
Material hasil glasiasi, meliputi sekitar 7%
Material air tanah, meliputi sekitar 1,2%
dan material yang terangkut oleh angin sekitar 1%
Dimana sekitar 80 % dari produk yang dihasilkan sumber material tersebut merupakan bentuk larutan.
Selain daripada aspek morfologi dan sedimentologi di laut, juga perlu ditinjau aspek tektoniknya. Tektonik sangat berpengaruh bukan saja di laut, didaratpun sangat berpengaruh. Implikasi dari proses tektonik baik didarat ataupun dilaut diantaranya adalah dapat merubah tatanan yang sudah terbentuk, diantaranya akibat proses sedimentasi. Faktor utama penyebab tektonik jika dipandang dari sudut pandang ilmu geologi tentu saja dapat dijelaskan dengan baik oleh teori tektonik lempeng. Teori tektonik lempeng sangat familiar dikalangan komunitas geologi, karena sampai saat ini semua peristiwa yang menyangkut segala proses geologi yang berasal dari dalam bumi, terutama tektonisme sangat baik dijelaskan dalam teori ini. Dapat dipastikan bahwa semua komunitas geologi mengerti dan paham akan teori ini, oleh karena itu detailnya tidak akan dibahas dalam tulisan ini. Tetapi yang perlu dijadikan perhatin khusus adalah implikasinya.
Beberapa penjelasan tentang geologi kelautan diatas, yang meliputi aspek morfologi, sedimentologi, dan tektonik dilaut, kiranya dapat memberikan sedikit pengetahuan geologi kelautan yang selanjutnya akan dimanfaatkan untuk menerapkan implikasinya untuk Indonesia yang notabene merupakan negara yang memiliki laut, yang dimanfaatkan untuk berbagai macam keperluan.
Diantaranya, implikasi aspek geologi kelautan yang saat ini banyak diperbincangkan adalah mengenai penerapannya dalam batas wilayah. Dalam penentuan batas wilayah sendiri seperti kita ketahui regulasi nya yang dikeluarkan oleh pemerintah. Penentuan batas wilayah ini sangat penting artinya bagi Indonesia. Dan aspek geologi kelautan disini memegang peranan penting dalam penentuannya. Hubungannya dengan geologi kelautan tentu saja, disamping menyamngkut morfologi dasar laut yang dijadikan pertimbangan penentuan batas wilayah, disamping itu dari sudut pandang geologinya, sangat memegang peranan penting, yang menyangkut tentang sumberdaya alam.
Sumberdaya alam sangat penting artinya bagi semua negara, karena menyangkut kelangsungan dan kemakmuran suatu negara, atau bisa dikatakan sangat vital. Sumberdaya alam itu sendiri tentu saja dapat dikuasai oleh suatu negara asalkan dalam wilayah kekuasaannya. Seorang ahli geologi disini sangat memegang peranan penting, karena pendapatnya akan sangat diperhatikan.
Seperti kita ketahui bahwa penentuan batas wilayah sendiri sangat didorong oleh keterdapatan sumberaya mineral, hal ini sangat membuat setiap negara ingin menguasai kekayaan alam tersebut, caranya secara tidak langsung adalah melebarkan batas wilayahnya, agar dapat diakui bahwa kekayaan alam tersebut adalah milik negara tersebut.
Mengingat begitu pentingnya tinjauan geologi kelautan dalam penentuan batas wilayah yang selanjutnya berimplikasi terhadap penguasaan sumberdaya mineral. Maka, kita sebagai seorang ahli geologi tentunya berusaha untuk mempelajari sebaik-baiknya, dan menerapkannya untuk kemakmuran bangsa Indonesia.
FISIOGRAFI DAERAH PEMETAAN
Van bemmelen (1949), membagi Jawa Barat menjadi enam zona fisiografi (Gambar 2.1),
yaitu :
1. Dataran pantai Jakarta (³Coastal Plain of Batavia´)
2. Zona Bogor
3. Zona Pegunungan Selatan Jawa Barat
4. Zona Bandung
5. Kubah Pegunungan
6. Gunung Api Kuarter
Daerah penelitian terletak di Zona Bogor. Zona ini merupakan kompleks perbukitan yang
memanjang barat-timur pada bagian baratnya, dan pada bagian timur berarah utara barat laut-
selatan tenggara dengan lebar maksimum 40 km. Van bemmelen (1949) menamakan perbukitan
ini sebagai antiklinorium akibat intensitas perlipatan yang kuat dari lapisan batuan yang
terbentuk pada Sub Zaman Neogen.
Zona ini terletak pada bagian selatan dari Dataran Pantai Jakarta yang merupakan suatu
jalur kompleks yang lebar sekitar 40  , membentang dari Jasinga melalui Bogor, Subang,
Sumedang dan berakhir di daerah Bumiayu di Jawa Tengah. Zona Bogor ini merupakan daerah
antiklinorium yang cembung ke utara dengan arah sumbu lipatan barat ± timur. Inti antiklinorium
ini terdiri dari lapisan-lapisan batuan berumur Miosen dan sayapnya ditempati batuan yang lebih
http://htmlimg3.scribdassets.com/2hlhr14t34ojn2h/images/2-a4cf004e7d/000.jpg
muda yaitu berumur Pliosen ± Pleistosen. Pada Zona Bogor, terdapat beberapa morfologi intrusi
berupa boss.
Batuannya terdiri atas batupasir, batulempung dan breksi yang merupakan endapan
turbidit, disertai beberapa intrusi hypabisal, konglomerat dan hasil endapan gunungapi.
Disamping itu juga terdapat lensa-lensa batugamping. Endapannya terdiri oleh akumulasi
endapan Neogen yang tebal dengan dicirikan oleh endapan laut dalam.
Gambar 1
Pembagian Fisiografi Jawa dan Madura (van Bemmelen, 1970).
ST R A T IG R A FI R E G IO N A L
Daerah pemetaan termasuk kedala pembagian stratigrafi daerah Zona Cekungan Bogor.
Zona cekungan bogor ini diisi oleh tiga sikuen sedimen. Pada awalnya sedimen laut dalam
terendapkan di ikuti oleh sekuen non marin yang perlahan-lahan berkembang menjadi sedimen
laut dan terakhir diendapkan dengan sedimen hasil gravity flow.
Sekuen yang paling bawah adalah Formasi Ciletuh yang mempunyai ketebalan 1400
meter dimana formasi ini terletak diatas kompleks mélange dan formasi ini terdiri dari lempung
yang teraltrasi dan batu pasir dengan beberapa breksi dengan ketebalan 20 meter dan lempung .
Sekuen kedua yang berhubungan dengan batupasir karena lingkungan pengendapan
shallow marine dan termasuk dalam Formasi Bayah dengan beberapa lempung dan lignit.
Kemungkinan Formasi ini berumur Awal hingga Akhir Oligocene. Formasi ini tidak selaras
dengan Formasi Batuasih yang terletak diatasnya. Formasi Batuasih terdiri dari lempung hitam
dan shale dimana formasi ini menjemari dengan Formasi Rajamandala yang keseluruhannya
berkomposisi batugamping dengan ketebalan 90 meter dan berumur Oligocene-Miocene.
Sekuen ketiga asalnya terbentuk dari gravity flow. Formasi yang terletak paling bawah
adalah Formasi Jampang yang terdiri dari breksi tufa dengan ketebalan formasi 1000 meter dan
berumur awal Miocene. Formasi yang mempunyai kemiripan dengan Formasi Jampang adalah
Formasi Citarum yang terletak pada bagian utara cekungan. Formasi Citarum terdiri dari tufa dan
greywacke dengan ketebalan 1250 meter. Kedua unit ini menunjukan sistem kipas bawah laut.
Formasi Jampang menunjukan cirri-ciri dari endapan upper fan dan Formasi Citarum
menunjukan ciri-ciri lower fan. Formasi Bojonglopang terletak secara tidak selaras formasi
Saguling yang mengandung breksi dengan ketebalan 1500 meter berumur Mid-Miocene. Di atas
Formasi Saguling terletak Formasi Bantargadung yang terdiri dari batulempeng dan greywacke
yang berumur Miocen akhir dengan ketebalan 600 meter
Bagian paling muda dari sedimen gravity flow adalah Formasi Cantayan yang terdiri dari
breksi yang berumur Miocene Akhir.
Formasi yang terdapat di daerah penelitian adlah formasi cantayan.
STRUKTUR REGIONAL
Pulau Jawa dan Madura secara keseluruhan dibentuk oleh system perlipatan dan
pensesaran akibat tumbukan Lempeng Eurasia (kerak benua) yang bergerak ke selatan dengan
Lempeng Hindia (kerak samudera) yang bergerak ke utara. Akibatnya maka kecenderungan arah
(trend) sumbu-sumbu perlipatan pada umumnya adalah timur-barat, hal ini dapat dilihat dari
interprestasi citra landsat yang telah dilakukan oleh Sujiwanto (1978) dan diperkuat dengan data
perhitungan gravity pada daerah Jawa Barat yangdilakukan oleh Untung dan Sato (1978).
Secara regional struktur struktur Jawa Barat dibagi menjadi empat daerah (Van
Bemmelen, 1938) yaitu Pegunungan Selatan, Zona Bandung, Zona Bogor dan Dataran Jakarta.
Adapun pembentukannya berkaitan dengan Geantiklin Jwa dimana waktu pembentukannya
dimulai pada akhir paleogen dimana pada masa itu terjadi pengangkatan basement yang cukup
jauh dan beberapa perlipatan terjadi, terutama pada lembah Cimandiri. Geantiklin yang berumur
paleogen ini juga berada pada bagian barat dari pantai Ciletuh. Tapi pada Oligocene terjadi
penurunan hingga ke bawah permukaan laut sementara itu terjadi peningkatan aktivitas vulkanik.
Pengangkatan kembali terjadi pada akhir Mid-Miocene yang bersamaan dengan intrusi dan
ekstrusi yang bersifat asam seperti aliran dasitik dari formasi Genteng.
Ada beberapa geantiklin yang patah dan menurun kearah utara. Lebih lanjut muncul
beberapa perlipatan pada dua sisi dari sumbu antiklin dimana terjadi pergerakan kearah selatan
pada sayap selatan dan arah utara pada sayap utara. Bagian utara ini kemudian menjadi Zona
Bandung dan bagian selatan menjadi Pegunungan Selatan.
Pada pegunungan selatan, bagian-bagian yang berumur tersier awal pre-tersier hanya
tersingkap pada satu area yaitu disekitar Ciletuh. Struktur dari daerah Ciletuh ini sangat rumit.
Dibeberapa tempat bagian yang berumur pre-tersier bergerak naik terhadapa Ciletuh beds,
menyebabkan alterasi dan metamorphosis dynamo ini berumur pre-tersier, tapi ditemukan juga
yang bertransasi ke Ciletuh bed yang normal.
Kemudian dibagian barat dari zona Bandung-Lembah Cimandiri, diketahui bahwa bagian
yang berumur tersier telah terlipatkan sepanjang sumbu yang mempunyai trend Timur-Barat.
Juga terlihat blok-blok yang tersesarkan naik diatas endapan vulkanik kwarter, bentukannya
menyerupai horst, berumur paleogen dan terletak diantar Cibadak dan Sukabumi.
Gunung api kwarter sepanjang batas utara dari lembah ini telah tersesarkan dan
mengalami volcano-tektonik collapses. Garis sesar utama yang memotong melewati basement
kwarter yang paling tua yaitu kompleks Gagak-Kiaraberes-Endut mempunyai trend timur laut-
barat daya (Hartmann, 1938)
Pada Zona Bogor terdapat antiklinorium yang cukup rumit yang mencembung kearah
utara mulai dari bagian Rangkasbitung di bagian barat melewati Bogor, Purwakarta, Subang dan
Sumedang hingga Bumiayu di bagian timur. Bagian barat dari Zona Bogor menunjukan trend
utara-selatan dari antiklin yang menghilang kearah utara dibawah endapan alluvial dataran
Jakarta. Di daerah dekat Jasinga, terlihat bahwa trend utara-selatan tersebut membelok kearah
barat-timur antiklinorium dari zona bogor. Kemudian pada bagian tengah dan paling tiur dari
Zona Bogor mempunyai antiklinorium dengan barat-timur yang perlahan mencembung kearah
utara dengan perlipatan yang cukup intensif dan pengangkatan kea rah utara. Antiklinorium ini
berumur miocen dan sayapnya terbentuk pda pliocen dan pleistocen awal
Dua fasa utama perlipatan dari Zona Bogor dapat dibedakan menjadi dua (2) yaitu
perlipatan yang terjadi pada akhir miocendan perlipatan yang terjadi pada akhir miocen. Fasa ini
mempunyai umur yang sama dengan pengangkatan dari sabuk geantiklin hingga ke selatan.
Kemudian diketahui ada dua sekuen patahan yang terjadi pada Zona Bogor. Yang tertua
terdapat di Ciletuh yang hanya mempengaruhi formasi tertua diman bagian yang muda tersebar
melewati keseluuhan Zona Bogor. Trend dari sesar yang muda ditemukan di semua zona atau
cekungan Bogor. Sesar yang paling penting adalah sesar Cikalong yang berumurpre-Mid-
miocen, yang menyebabkan naiknya Formasi Ciletuh yang berumur miocen terhadap Formasi
Jampang yang berumur awal Miocen. Sesar yang juga penting adalha sesar Walat yang berumur
pliocen, yang juga menyebabkan naiknya Formasi Bayah yang berumur oligocen terhadap
Formasi Saguling yang berumur Mid-Miocen.
Kemudian di bagian utara dari cekungan Bogor, sesar Baribis merupakan sesar yang
penting dan masih aktif hingga akhir pleistocen.sesar Baribis mempengaruhi endapan fluvial dri
Formasi Citalang.
Selain sesar naik Cikalong, Walat dan beribis juga sesar-sesar naik yang lain tetpi tidak
ada yang mempunyai pengaruh sebesar ketiga sesar tersebut. Sesar nomal dan sesar geser juga
ditemukan (Soejono Martodjojo, 1975)

kandungan umum air laut
Hai-hai para blogger metal, bagi para metal mania khususnya bidang failure material of corrosion akan mewaspadai lingkungan ekstrim air laut (sea water) terhadap logam material.

http://4.bp.blogspot.com/_a9w2BZUajPw/R2DhefRco_I/AAAAAAAAAGU/edoZuEyHJxA/s400/diagram_saltwater.pngPada gambar di atas diambil dari suatu website tentang seawater memperlihatkan bahwa air laut terdiri dari 3,5% garam. Di dalam 3,5%wt garam terdiri dari :

a. Senyawa Klorida 55%wt
b. Senyawa sulfat 7,7%wt
c. Sodium 30,6%wt
d. Calcium 1,2%wt
e. Potassium 1,1%wt
f. Magnesium 3,7 %wt
g. Lain-lain 0,7%wt

Sehingga dapat dipastikan bahwa komposisi air laut umumnya mengandung ion klorida, kita tahu bersama bahwa ion klorida musuh bebuyutan umumnya logam-logam komersial seperti baja karbon, baja stainless dan lain-lain






Sirkulasi laut adalah pergerakan massa air di laut. Sirkulasi laut di permukaan dibangkitkan oleh stres angin yang bekerja di permukaan laut dan disebut sebagai sirkulasi laut yang dibangkitkan oleh angin (wind driven ocean circulation). Selain itu, ada juga sirkulasi yang bukan dibangkitkan oleh angin yang disebut sebagai sirkulasi termohalin (thermohaline circulation) dan sirkulasi akibat pasang surut laut. Sirkulasi termohalin dibangkitkan oleh adanya perbedaan densitas air laut. Istilah termohalin sendiri berasal dari dua kata yaitu thermo yang berarti temperatur dan haline yang berarti salinitas. Penamaan ini diberikan karena densitas air laut sangat dipengaruhi oleh temperatur dan salinitas. Sementara itu, sirkulasi laut akibat pasang surut laut disebabkan oleh adanya perbedaan distribusi tinggi muka laut akibat adanya interaksi bumi, bulan dan matahari.
http://3.bp.blogspot.com/_gU7QbSH3pT8/TP3VeBbSj4I/AAAAAAAAAD4/LrCPXYH_bow/s320/ocean-8c5n.jpg
Sirkulasi di permukaan membawa massa air laut yang hangat dari daerah tropis menuju ke daerah kutub. Di sepanjang perjalanannya, energi panas yang dibawa oleh massa air yang hangat tersebut akan dilepaskan ke atmosfer. Di daerah kutub, air menjadi lebih dingin pada saat musim dingin sehingga terjadi proses sinking (turunnnya massa air dengan densitas yang lebih besar ke kedalaman). Hal ini terjadi di Samudera Atlantik Utara dan sepanjang Antartika. Air laut dari kedalaman secara perlahan-lahan akan kembali ke dekat permukaan dan dibawa kembali ke daerah tropis, sehingga terbentuklah sebuah siklus pergerakan massa air yang disebut Sabuk Sirkulasi Laut Global (Global Conveyor Belt). Semakin efisien siklus yang terjadi, maka akan semakin banyak pula energi panas yang ditransfer dan iklim di bumi akan semakin hangat.
Akibat bumi yang berotasi, maka aliran massa air (arus) yang terjadi akan dibelokkan ke arah kanan di belahan bumi utara (BBU) dan ke kiri di belahan bumi selatan (BBS). Efek ini dikenal sebagai gaya semu Coriolis. Pembelokkan ini menjadikan tinggi dan rendahnya elevasi muka laut berbanding secara langsung dengan kecepatan arus permukaan. Perubahan elevasi muka laut yang diakibatkan aliran massa air ini disebut sebagai topografi laut dan saat ini dapat diamati dengan menggunakan satelit TOPEX/Poseidon. Dengan bantuan data dari satelit ini, maka para ahli dapat memetakan pola arus laut global.
Variasi yang terjadi pada sirkulasi laut mengakibatkan variasi pada transpor energi panas dan pola musim. Seperti diketahui bahwa laut memiliki peranan yang sangat penting dalam mendsitribusikan energi panas dari daerah ekuator ke daerah kutub karena kemampuan air untuk menyimpan energi panas dalam waktu yang sangat lama (bandingkan dengan tanah yang cepat menjadi dingin ketika matahari sudah tidak menyinarinya lagi). Hal ini menjadi bagian yang sangat vital dalam menentukan pola cuaca/iklim di bumi. Menurut penelitian yang dilakukan di University of Bern dengan menggunakan model iklim dengan perata-rataan ke arah zonal (zonally averaged climate model), pemanasan global yang terjadi saat ini akibat adanya efek gas rumah kaca bisa merubah dan bahkan mematikan sabuk sirkluasi laut global (Stocker and Schmittner, 1997).

4 comments:

  1. makasih kakak, membantu banget. btw kakak ada info tentang tektonik kepulauan jepang ga kak? makasih :)

    ReplyDelete
  2. Q masih belum cari,dek. kapan2 Q cari'in. thanks dah baca blogQ ni.... :)

    ReplyDelete
  3. sangat membantu tapi sayang, gambarnya ngg bisa diliat :)

    ReplyDelete
  4. maaf kalau gambarnya gak bisa diliat... :)

    ReplyDelete